DeepFill

DeepFill,尤其是DeepFill v2,利用门控卷积(Gated Convolution)和谱规范化(SN-PatchGAN)进行图像修复。门控卷积能学习每个通道的空间信息,提高修复精度,且不干扰原有像素。论文贡献包括提出新损失函数和交互式演示。应用在Places2和CelebA-HQ数据集上,展示了在图像修复领域的前沿效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

台湾 余家辉

Generative Image Inpainting with Contextual Attention(基于内容感知生成模型的图像修复)
这篇文章也被称作deepfill v1,作者的后续工作 "Free-Form Image Inpainting with Gated Convolution" 也被称为deepfill v2。两者最主要的区别是,v2支持任意形状的mask(标记图像待修复区域的罩子 mask?)
https://zhuanlan.zhihu.com/p/50620348

Deepfillv2
2019-ICCV-Adobe-Free-Form Image Inpainting with Gated Convolution
https://mc.ai/gated-convolution-%E5%9C%96%E5%83%8F%E4%BF%AE%E5%BE%A9%E4%BB%BB%E5%8B%99-deepfillv2-free-form-image-inpainting-with-gated-convolution/
此論文的主軸為 Gated convolution,

其特點為可以學習出每層 Channel 相對應的空間資訊,

舉例來說對於圖像的修復我們都會給定一個 Mask 指定哪個部分是需要修復的,

透過瞭解空間資訊(Mask),可以讓 CNN 進行更精確的修補,並且不影響到原本就是好的 pixel。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WX Chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值