// Fibonacci.cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#include<stdio.h>
#include<malloc.h>
int partition(int n,int m)
{
if(n==1||m==1)//当n=1或m=1时,只有一种划分方式
{
return 1;
} //不能没有这一块,否则当n=1,m=0将成无限循环
else if(n<m) //n<m时,最大划分整数,也不会超过n
{
return partition(n,n);
}
else if(n==m) //n=m时,包含m1=n的划分,以及m1<n的划分
{
return 1+partition(n,n-1);
}
else //n>m时,包含m1=m的划分,也就是partition(n-m,m).该划分即m+(n-m),
// m+(n-m)中(n-m)的划分,如6: 4+2,4+1+1;1+1即2的划分
{ //还有, m1<m 的划分,即partition(n,m-1)
return partition(n-m,m)+partition(n,m-1);
}
}
void output(int x[],int count)
{
for(int i=0;i<count-1;i++)
printf("%d+",x[i]); //前count-1个包含“+”,所以只输出前count-1个数
printf("%d\n",x[count-1]); //第count-1个没有“+”,所以单独输出
}
int partitionhelp(int n,int m,int x[],int count)
{
if(n==1) //n==1时,显然只有1种划分
{
x[count]=1;
output(x,count+1);
}
else if(m==1) //当m==1时,是以m1为开头的划分的结束部分,即4+1+1
{
for(int i=count;i<count+n;i++) //如若变为partitionhelp(2,1),则为2个1即4+1+1
x[i]=1;
output(x,count+n);
}
else if(n<m) //这里之所以要else 是因为,当m=1时就要停止第一次第归,否则
{ //当n=1,m=0时,将形成无限循环
return partitionhelp(n,n,x,count);
}
else if(n==m)
{
x[count]=n;
output(x,count+1); //输出x[0]=5,x[1]=1,
return partitionhelp(n,n-1,x,count);//x[1]=1,x[2]=1
}
else
{
x[count]=m; //x[0]=5
return partitionhelp(n-m,m,x,count+1)+partitionhelp(n,m-1,x,count);
}
}
int _tmain(int argc, _TCHAR* argv[])
{
int n=6;
int * x=(int *)malloc(sizeof(int )* n);
printf("there are %d methods:",partition(n,n));
partitionhelp(6,6,x,0); //count初始化为0
return 0;
}