【习题集四】无监督学习和强化学习

1. 监督学习的EM算法 EM for Supervised Learning

我们曾推导过针对无监督学习的EM算法,,其中,我们将p(x)表示为,其中z是隐含参数

下面我们将尝试将EM算法应用于监督学习模型,并讨论“混合线性回归Mixture of Linear Regressors”模型,这是一种专业模型层次化混合Hierarchial Mixture of Expert Model的一个实例,其公式为.

为了简化模型,我们将z设为一个二元变量,并认为p(y|x, z)服从高斯分布,且p(y|x)可由logistic回归模型描述,因此我们有如下公式


其中σ是已知参数,我们希望求得n维向量φ、θ0、θ1,且θ的下标仅表示不同的参数向量,不表示不同的输入。

直观而言,这一过程可被理解为如下过程:给定一个数据点x,我们先根据logistic模型确定其隐含参数的分类,如z=0或z=1;在此基础上认为y是x的线性函数并加上一些高斯误差(不同的z对应不同的线性方程)。如下图所示


(1)假设x、y、z都可被观测到,即我们有训练集{(x1, y1, z1), (x2, y2, z2), (xm, ym, zm)}。给出参数的最大对数似然方程,并给出φ、θ0、θ1的最大似然估计。注意到由于p(z|x)为logistic模型,故φ没有一个闭式的精确解,因此我们可以通过给出其Hessian矩阵和对φ求导的结果。

解:对数似然函数为


将其对θ0求导,并令结果为0,我们有


但这只是数据集的子集中的最小平方误差问题,事实上,如果我们令所有的z均为0,通过同样的方法,我们可得到关于θ0的最大似然估计为


同理我们也可以获得对θ1进行最大似然估计的结果。

将对数似然函数对φ求导,并忽略与φ无关的项,可得如下方程


这是一个典型的logistic回归方程,我们已知其导数和Hessian矩阵为


(2)现在假设z是一个隐含(不可见)的随机变量,给出参数的对数似然函数,并推导求得对数似然函数最大值的EM算法,主要应当明显区分E步和M步(再次提醒,M步要求数值解,给出导数和Hessian矩阵即可)

解:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值