基于flask的猫狗图像预测案例

📚博客主页:knighthood2001
公众号:认知up吧 (目前正在带领大家一起提升认知,感兴趣可以来围观一下)
🎃知识星球:【认知up吧|成长|副业】介绍
❤️如遇文章付费,可先看看我公众号中是否发布免费文章❤️
🙏笔者水平有限,欢迎各位大佬指点,相互学习进步!

假设,你有模型,有训练好的模型文件,有模型推理代码,就可以把他放到flask上进行展示。

项目架构

在这里插入图片描述

  • index.html是模板文件
  • app.py是项目运行的入口
  • best_model.pth是训练好的模型参数
  • model.py是神经网络模型,这里采用的是GoogleNet网络。
  • model_reasoning.py是模型推理,通过这里面的代码,我们可以在本地进行猫狗图片的预测。

运行图

在这里插入图片描述

点击选择文件
在这里插入图片描述
图片下面就显示预测结果了。
在这里插入图片描述

项目完整代码与讲解

index.html

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>图像分类</title>
    <style>
        body {
     
            font-family: Arial, sans-serif;
            margin: 20px;
        }
        #result {
     
            margin-top: 10px;
        }
        #preview-image {
     
            max-width: 400px;
            margin-top: 20px;
        }
    </style>
</head>
<body>
    <h1>图像分类</h1>
    <form id="upload-form" action="/predict" method="post" enctype="multipart/form-data">
        <input type="file" name="file" accept="image/*" onchange="previewImage(event)">
        <input type="submit" value="预测">
    </form>

    <img id="preview-image" src="" alt="">
    <br>
    <div id="result"></div>

    <script>
        document.getElementById('upload-form').addEventListener('submit', async (e) => {
     
            e.preventDefault();  // 阻止默认的表单提交行为
            const formData = new FormData(); // 创建一个新的FormData对象,用于封装表单数据
            formData.append('file', document.querySelector('input[type=file]').files[0]);  // 添加表单数据
            // 使用fetch API发送POST请求到'/predict'路径,并将formData作为请求体
            const response = await fetch('/predict', {
     
               
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

knighthood2001

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值