牛顿-拉夫逊法 原理讲解以及python算例实现

本文详细介绍了牛顿-拉夫逊法的基本原理,通过切线逼近曲线来寻找方程的根。阐述了切线作为曲线线性逼近的概念,并通过实例解释了牛顿-拉夫逊法的迭代过程和收敛条件。此外,还提供了一个Python代码示例来演示该方法的实现。文章强调了函数二阶可导和初始点选择的重要性,并提醒读者注意可能的不收敛情况。
摘要由CSDN通过智能技术生成


一、基本原理

    对于一个方程 f ( x ) = 0 ,我们将函数 f ( x )单独考虑。
    若函数 f ( x ) (n+1)阶可导,则我们在初始值 x = x 0 处进行泰勒展开,可得:

    令 x − x 0= Δ x ,然后将上述泰勒公式一阶展开,忽略余项可得:

   令其等于 f ( x ) = 0,可得:

   从而求出:

二、原理深入讲解

1 、切线是曲线的线性逼近

   要讲牛顿迭代法之前我们先说一个关键问题:切线是曲线的线性逼近。
   这个是什么意思呢?我们来看一看,下面是 f(x)=x^2 的图像:

   我们随便选一点f(x) 上的一点(a,f(a))作它的切线:

   我们在A点处放大图像:

   上图中,红色的线是f(x),黑色的是A点处的切线,可以看出放大之后切线和f(x)非常接近了。很明显,如果我们进一步放大图像,A点切线就越接近f(x)。

   因为切线是一条直线(也就是线性的),所以我们可以说,A点的切线是f(x)的线性逼近。离A点距离越近,这种逼近的效果也就越好,也就是说,切线与曲线之间的误差越小。所以我们可以说在A点附近,“切线约等于 f(x) ”。

2、 牛顿-拉夫逊法

   牛顿-拉夫逊法提出来的思路就是利用切线是曲线的线性逼近这个思想。
   牛顿、拉夫逊们想啊,切线多简单啊,研究起来多容易啊,既然切线可以近似于曲线,我直接研究切线的根不就成了。
然后他们观察到这么一个事实:

   随便找一个曲线上的A点(为什么随便找,根据切线是切点附近的曲线的近似,应该在根点附近找,但是很显然我们现在还不知道根点在哪里),做一个切线,切线的根(就是和x轴的交点)与曲线的根,还有一定的距离。牛顿、-拉夫逊们想,没关系,我们从这个切线的根出发,做一根垂线,和曲线相交于B点,继续重复刚才的工作:

   之前说过,B点比之前A点更接近曲线的根点,牛顿、拉弗森们很兴奋,继续重复刚才的工作:

   第四次就已经很接近曲线的根了

   经过多次迭代后会越来越接近曲线的根(下图进行了50次迭代,哪怕经过无数次迭代也只会更接近曲线的根,用数学术语来说就是,迭代收敛了):

3 、牛顿-拉夫逊法是否总是收敛(总是可以求得足够近似的根)?

我们来看看收敛的充分条件:

f(x)
二阶可导,那么在待求的零点
x
周围存在一个区域,只要起始点
x_0
位于这个邻近区域内,那么牛顿-拉弗森方法必定收敛。

   也就是说,在这个区域内,用切线代替曲线这个直觉是合理的。但是,因为我们不知道根点到底在哪里,所以起始点 x_0 选择就不一定在这个区域内,那么这个直觉就不可靠了。
驻点

   起始点不幸选择了驻点,从几何上看切线根本没有根。
从代数上看,x{n+1}=xn-f(xn)/f’(xn)没有意义。
越来越远离的不收敛

循环震荡的不收敛

不能完整求出所有的根

三、pythons实例

   牛拉法主要流程

   以 x 2 − 4 x - 4 = 0 为例,设计 Python 程序:


import numpy as np
import pandas as pd
import matplotlib.pyplot  as plt

def fun(x):
    y = x ** 2 - 4 * x - 1
    return y


def fun_diff(x):
    y = 2 * x - 4
    return y


def Netwon(x0, func, dfunc):
    # 迭代条件
    e = 1e-5
    x = np.zeros(2)
    x[0] = x0
    x[1] = x0 - func(x[0]) / dfunc(x[0])
    while abs(func(x[0])) > e:#在0附近
        x[0] = x[1]
        x[1] = x[0] - func(x[0]) / dfunc(x[0])
    return x[1]


if __name__ == '__main__':
    x=np.arange(-5,5,0.1)
    y=fun(x)
    x1=Netwon(0, fun, fun_diff) #牛拉法求得的点

    plt.plot(x,y)
    plt.xlim(-5, 5)
    plt.ylim(-10, 50)
    plt.scatter(x1,fun(x1),color='red')
    plt.show()
    

总结

应用牛顿-拉夫逊方法,要注意以下问题:
函数在整个定义域内最好是二阶可导的
起始点对求根计算影响重大,可以增加一些别的判断手段进行试错

在这里插入图片描述
作者:电气-余登武

牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。 设r是f(x) = 0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y = f(x)的切线L,L的方程为y = f(x0)+f'(x0)(x-x0),求出L与x轴交点的横坐标 x1 = x0-f(x0)/f'(x0),称x1为r的一次近似值。过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x轴的横坐标 x2 = x1-f(x1)/f'(x1),称x2为r的二次近似值。重复以上过程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f'(x(n)),称为r的n+1次近似值,上式称为牛顿迭代公式。 解非线性方程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。把f(x)在x0点附近展开成泰勒级数 f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=f(x)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。
### 回答1: 电分实验是一种常用的电气实验,在实验室中使用电分仪来测量不同装置或电路的电压、电流和功率等电学量,借此来研究电路的性质与特性。电分实验广泛应用于电力系统、电子器件和通信系统等领域。 牛顿-拉夫逊法是一种用于求解非线性方程组的数值方法。该方法通过不断迭代,逐步逼近方程组的解。对于电力系统的潮流计算来说,其物理模型可以用非线性方程组来描述。使用牛顿-拉夫逊法可以高效地求解该方程组,得到系统中各节点的电压和相应的功率。 Matlab是一种常用的科学计算软件,它提供了丰富的工具和函数用于数值计算、矩阵运算、数据可视化等。在电力系统领域,Matlab可以用于潮流计算的编程实现。通过编写相应的算法和使用Matlab提供的函数,可以利用牛顿-拉夫逊法求解电力系统的潮流计算问题。 总而言之,电分实验是一种测量电学量的实验方法,牛顿-拉夫逊法是一种用于求解非线性方程组的数值方法,而Matlab是一种常用的科学计算软件,可以用于电力系统潮流计算的编程实现。这些方法和工具相互结合,能够有效地研究和解决电力系统中的问题。 ### 回答2: 电分实验是一种在电力系统中模拟各种故障情况和优化方案的实验方法。通过电分实验,可以得到电力系统中各节点的电压和电流分布情况,从而帮助电力系统工程师更好地了解系统的运行状态。 牛顿-拉夫逊法是一种用于求解非线性方程组的数值计算方法。在电力系统的潮流计算中,常常需要求解电力系统中各节点的电压和功率的关系方程,这就需要用到牛顿-拉夫逊法。该方法通过迭代计算,逐步逼近方程组的根,从而得到方程组的可行解。 Matlab是一种用于科学计算和工程设计的软件平台。在电力系统中,可以利用Matlab编写程序,实现电力系统的潮流计算以及其他电力系统相关的计算任务。Matlab具有强大的矩阵计算和数据可视化能力,能够帮助电力系统工程师更好地理解电力系统的工作原理和优化方案。 综上所述,电分实验是一种模拟电力系统故障和优化方案的实验方法;牛顿-拉夫逊法是一种求解非线性方程组的数值计算方法;Matlab是一种用于电力系统潮流计算的软件平台。这三者在电力系统工程中都起着重要的作用,能够提高电力系统的安全性和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

总裁余(余登武)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值