牛顿-拉夫逊简单解释



核心:

牛顿-拉夫逊法在数学上是求解非线性代数方程式的有效方法。

其要点是把非线性方程式的求解过程变成反复地对相应的线性方程式进行求解的过程,即通常所称的逐次线性化过程。是数值计算普遍使用的重要方法,以开方运算为例,求平方根不是四则运算,因此在计算机上求平方根使用牛顿-拉夫逊迭代法来转化为四则运算进行求解。




将非线性代数方程组

                                   (1)

   在待求量  的某一个初始估计值 附近,展开成泰勒级数并略去二阶及以上的高阶项,得到线性化方程组

                         (2)

  称为牛顿法的修正方程式

由上式根据初值   可求得第一次迭代的修正量

           (3)

将  相加,得到变量的第一次改进值

牛顿法求解的迭代格式为

      (4)

       (5)

(4) 和(5)两式中  是函数 关于 的一阶偏导数矩阵

jacobi matrit雅可比矩阵      是迭代次数

牛顿法当初值  和方程的精确解足够接近时,具有平方收敛特性。 

如下图:


所求  ,经常被拿来,做cost function 



如果上面的解释仍然不是很明确的话,下面给出更详细清楚的说法

假定  a > 0 ,求  等价于解方程

给定一个初始近似值  令

  是一个校正量,称为增量,于是

    即  


由于  是一个小量,如果省略高阶项    ,则得到

即 

于是 

这里 不是 的真值, 但是是真值  的 进一步近似,重复以上过程可得到迭代公式

        

逐次求得        若


则 ,容易证明序列对于任意 均收敛

简单python 2.7代码如下:

x=float(input("sqrt root for:"))

guess=20
while abs(guess*guess-x)>0.05:
    guess=(guess + x/guess)/2
    print(guess,guess*guess)
print guess


改变 guess 以及 近似误差(epsilon),都会对求解过程产生影响。

以下贴一个二分查找求平方根:

def pow(x,epsilon):
    numGuesses=0
    low=0.0
    high=x
    ans=(high + low)/2.0
    while abs(ans**2 - x)>=epsilon:
        numGuesses +=1
        print "high is " + str(high) + " low is " + str(low) + " ans " + str(ans)
        if ans**2 <x:
            low = ans
        else:
            high=ans
        ans=(high + low)/2.0
    print ans 
    print numGuesses




改变 guess 以及 近似误差,都会对求解过程产生影响。












牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。 设r是f(x) = 0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y = f(x)的切线L,L的方程为y = f(x0)+f'(x0)(x-x0),求出L与x轴交点的横坐标 x1 = x0-f(x0)/f'(x0),称x1为r的一次近似值。过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x轴的横坐标 x2 = x1-f(x1)/f'(x1),称x2为r的二次近似值。重复以上过程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f'(x(n)),称为r的n+1次近似值,上式称为牛顿迭代公式。 解非线性方程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。把f(x)在x0点附近展开成泰勒级数 f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=f(x)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值