【矩阵论】矩阵的相似标准型(5)

18 篇文章 292 订阅

矩阵的相似标准型之特征值的分布

原视频对应分集《矩阵的相似标准型(5)》中含有部分内容是与Jordan标准型相关的
这一部分我放在前一篇博文里面了,如果是对照视频来看博客的朋友可以移步《【矩阵论】矩阵的相似标准型(4)(5)》~

本节内容的提出,是基于在很多实际问题中我们并不需要求解出矩阵特征值的精确值;
只需要知道特征值的范围,特征值的模长等比较宽泛的信息即可。


一. 基本概念

设A = (aij)nxn,A是一个n阶矩阵,那么A应该有n个特征值(可能是重根)

1. 谱

(1)谱

A的特征值的集合为A的谱

(2)谱半径

A的特征值(可能含有复数根)的模的最大值为A的谱半径,记作ρ(A)

针对以上两个概念,我们有两个任务:
其一,估计A的谱所分布的大概的集合范围
其二,估计谱半径大致的数值范围

2. 盖尔园(系)

(1)Ri
Ri就是n阶矩阵的第i行中除了主对角线元素以外其他所有元素的模之和。

在这里插入图片描述
(2)Ci:复平面上的一个圆
Ci是以第i行的主对角元为圆心,以Ri为半径所对应的一个圆面区域。
在这里插入图片描述

由此可知,n阶矩阵就应该有n个盖尔园。

(3)盖尔园系
所有盖尔园的并集,是复平面上的一段区域。
在这里插入图片描述

定义盖尔园系,是为了借助它估计矩阵A的谱及谱半径。


二. 重要定理与概念

1. 特征值∈盖尔园系

(1)定理描述

定理1:矩阵A的特征值必定在A的盖尔园系中

(2)定理证明
在这里插入图片描述
[1]:题目需要围绕特征量进行证明,先把矩阵的特征值λ0、特征向量η设出来,且满足Aη = λ0η的关系。
[2]:既然η是特征向量(那么一定非零),所以找到其中最大的一个分量xk,xk≠0
[3]:把Aη = λ0η的矩阵乘法按照行进行展开,接下来会围绕第k行的运算进行证明化简。

在这里插入图片描述
[4]:第k行的矩阵运算是形如ak1x1+…+akkxk+…+aknxn = λ0xk
[5]:把上式第k项akkxk提出来移到等式右边,等式两边同时取模长运算
[6]:针对复数运算的三角不等式进行放缩
[7]:因为|xk|是所有|xi|(i=1,2,…,n)中分量模长最大的一个,所以可以继续进行放缩;然后得到了第k个盖尔园的定义式

综上,证明出了A的特征值一定在A的第k个盖尔园(k是该特征值对应的特征向量的最大分量下标)中,也就是在A的盖尔园系中。

(3)例题演练

如果对于上面定理的证明过程有详细了解的话,不难发现对于一个n阶矩阵——
有n个盖尔园,也有n个特征值
且每个特征值都会属于某一个盖尔园


但并不意味着特征值和所属的盖尔园是一一对应的,即并不是每一个盖尔园中都会有所属的特征值。
接下来这个例题也可以说明这个问题。

【例】给定一个矩阵,考察其每个特征值所属的盖尔园
在这里插入图片描述
[1]:按照盖尔园的定义,写出了这个二阶矩阵的两个盖尔园
p.s. C1的绝对值里面是Z+4(截图的时候忘记补上断裂的加号了)

[2]:求解该二阶矩阵的特征方程,得到两个特征值
[3]:可以对照着两个盖尔园和两个特征值,1-根号15肯定小于0,所以在C1这个盖尔园中
1+根号15小于5,因此也在C1这个盖尔园中

出现上述情况的原因,可能是C1和C2两个盖尔园是有交集的。


2. K区

(1)定义
在这里插入图片描述

在上图中,6个盖尔园构成的盖尔园系是由一个4区和一个2区构成的。

【例】判断给定矩阵的K区
在这里插入图片描述

矩阵A的三个盖尔园都是以2为圆心,1为半径的圆-----3区
矩阵B的C1和C3是同心圆,构成2区;另外一个圆单独构成1区。

(2)定理

相比前面给出的“特征值属于矩阵的盖尔园系中”,这个定理给出了更加一般的性质

A的盖尔园的k-区有且仅有A的k个特征值

注意:对于这个定理有一些小细节
①完全相同的盖尔园也是算作k区之中的
②k个特征值中,若有重根要按照重数重复计算特征值的个数

(3)推论

如果A的n个盖尔园互不相交,则A有n个互不相等的特征值。

也就是说每个盖尔园都构成1区,而每个1区中都仅有A的1个特征值。

p.s. 矩阵的特征值互不相同是一个很好的性质:矩阵特征值互不相同→矩阵相似于一个对角阵→对角阵的特征量、秩以及计算都会有很多较好的性质。

【例题】利用上述定理可以快速判断矩阵的相关性质
在这里插入图片描述
先计算矩阵A的三个盖尔园,有1个2区和1个1区,并不能确定出矩阵的什么性质。
但是根据“矩阵一定相似于其转置矩阵”,可以对AT求解盖尔园,从而判断出特征量的信息。

矩阵一定相似于其转置矩阵
这里不进行证明,只是提供一个思路:

因为矩阵相似的定义是存在一个可逆矩阵P,有P-1AP = B,就说明矩阵A与B相似
而对一个矩阵A左乘和右乘一个可逆矩阵,相当于对矩阵A进行初等行变换和初等列变换

把一个矩阵变成其转置矩阵,只需要进行初等行(列)变换,也就够了。

通过对AT进行计算(对A是关于行计算,对AT关于列计算即可),得到的三个盖尔园是互不相交的,从而可以得出矩阵A是相似于对角阵的。


3. 谱半径的估计

从前面提出盖尔园(系)及其定理,再到K区的提出以及相关定理,为谱估计(特征值的分布)提供了思路。

接下来我们要着手解决谱半径的估计问题。

(1)定理描述
在这里插入图片描述
说明:
ρ1:按照行把矩阵A的元素的模求和,在这n行对应的n个和中,最大的设为ρ1
ρ2:按照列把矩阵A的元素的模求和,在这n列对应的n个和中,最大的设为ρ2

(2)定理证明

①证明ρ(A)≤ρ1
在这里插入图片描述
[1]:要证明ρ(A)≤ρ1,则要证明特征值中的最大值≤ρ1,那么对于任意一个特征值λ0,都有|λ0|≤ρ1即可。

[2]:假设λ0是在第k个盖尔园中,则按照盖尔园的定义,就有第二个框中的不等式成立,按照模运算的三角不等式,|λ0-akk|≥|λ0|-|akk|

[3]:不等式移项,从而得出λ0的模长小于第k行所有元素的模长之和;按照ρ1的定义,0|也必然≤ρ1

②证明ρ(A)≤ρ2

读者可以联想一下“行”、“列”、“特征值”这些词,然后思考一下,如果要证明第二部分,应该从什么思路来入手呢?

Bingo! 就是矩阵的转置。

既然矩阵A与矩阵AT具有完全相同的特征值,对AT用列进行证明↔对A用行来证明。
以下不再赘述。


(3)例题演练
【例】估计矩阵的谱半径
在这里插入图片描述
按照前面的谱半径估计定理,我们可以计算出ρ1= ρ2 = 6,从而只能得到ρ(A)≤6.
但是题目要求我们能够严格地证明出谱半径是小于6的。

可能大部分人会想到下面这个思路(没错,当时我也中招了)

要证明ρ(A)<6,且已知ρ(A)≤6,则只需要证明ρ(A)≠6即可。
p.s. 其实思路到上面这一步还是正确的…

接下来,可能就会定式思维地(因为给出的矩阵是实矩阵,我们通常接触到的特征值也是实数)认为——
只要证明6不是矩阵A的特征值即可。

错误!!因为ρ(A)≠6,意味着A的特征值中最大的那一个的模长不为6,而在复平面上模值为6的点有无穷个,此法根本行不通。

但是我们可以结合盖尔园的图形来理解(数形结合!数形结合!)

在复平面中把各个盖尔园的图形绘制出来(老师绘制的可能有部分细节不对,大致理解就可以了),发现离复平面的原点距离为6(模长为6)且在盖尔园系范围内的点,只有(6,0)这一个点。

接下来,我们就可以正大光明地证明“因为6不是矩阵A的特征值,所以ρ(A)≠6”了~

p.s. 一定要注意,是因为结合图像把模长为6的点锁定在了实数6上面,这样的证明才是可行的!!
在这里插入图片描述

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值