相似变换矩阵 左乘P逆,右乘P



两个相似的矩阵有许多相同的性质:

### 矩阵的区别 在矩阵运算中,区分对于理解操作的本质至关重要。如果存在两个矩阵 \(A\) 和 \(B\) ,其中 \(A\) 的维度为 \(m \times n\) 而 \(B\) 的维度为 \(n \times p\) 。那么: - ****指的是另一个矩阵侧相的情况,即形式为 \(C = BA\) 的情况,在这里假设 \(B\) 是一个合适的尺寸使得该法可以执行。这通常意味着 \(B\) 必须具有与 \(A\) 列数相同的行数。 - ****则是指另一个矩阵侧相的情形,也就是形如 \(D = AB\) 这样的表达方式,此时 \(A\) 应具备足够的列来匹配 \(B\) 的行数[^1]。 这种区别不仅影响到最终得到的结果矩阵的形状,还涉及到线性变换的方向性和性质的变化。 ### 的应用场景 #### 变换视角下的差异 在线性代数里,矩阵常常用来表示向量空间中的线性变换。当考虑不同类型的积时: - 对于给定的一个方阵 \(M\) 来说,\(v' = Mv\) 描述了一个作用于向量上的主动变换;而 \(w'^T = w^TM^{-1}\) (假定 \(M\) 是可的情况下),则描述了一种被动变换或者说坐标系转换的效果。前者属于典型的案例,后者涉及到了的概念。 #### 特殊情况下意义的不同 某些特定条件下,比如求解线性系统或者特征值问题的时候,选择边还是边进行操作会有不同的含义: - 当处理齐次线性方程组 \(Ax=0\) 或者非齐次线性方程组 \(Ax=b\) 时,通过初等行变换(对应着一系列的操作)可以使系数矩阵简化成更易于分析的形式——上三角矩阵甚至是行最简矩阵。 - 如果要研究某个矩阵关于另一些基底的表现形式,则可能需要用到相似变换 \(PAP^{-1}=J\) (Jordan标准型),这里面包含了两次分别作为因子和因子参与运算的过程。 ```python import numpy as np # Example of left and right multiplication with square matrices. A = np.array([[1, 2], [3, 4]]) B = np.array([[5, 6], [7, 8]]) left_multiply_result = B @ A # Left multiply: C = BA right_multiply_result = A @ B # Right multiply: D = AB print("Left Multiply Result:\n", left_multiply_result) print("\nRight Multiply Result:\n", right_multiply_result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值