单边z变换定义为 F(z) = f(0)*z^0+f(1)*z^(-1)+f(2)*z^(-2)+...+f(k)*z^(-k)+...
生成函数定义为 F(z) = f(0)*z^0+f(1)*z^(1) +f(2)*z^(2) +...+f(k)*z^(k)+....
感觉有些相似。一个是z的正数次幂,一个是z的负数次幂。
研究生成函数的时候一般都假设其收敛。z变换有个收敛域,当级数收敛时,z变换才有意义。
生成函数会把序列表示成一个封闭的形式,z变换也是。
生成函数重要是分析序列的性质,z变换主要是分析离散系统(但是,实质是否一致呢?)
z变换提供了另外一个角度(z域,类似傅里叶变换中的频率)来研究差分方程,生成函数呢?
学过的都还给老师了。细节一点的全搞不清楚了。靠。