一、非监督学习(unsupervised learning)K-means
1)从原始数据到聚类完毕的数据:
2)聚类流程示意图:
二、k-means步骤
1、随机设置K个特征空间内的点作为初始的聚类中心
2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别
3、接着对着标记的聚类中心之后,重新计算出每个聚类的新中心点(平均值)
4、如果计算得出的新中心点与原中心点一样,那么结束,否则重新进行第二部过程
三、k-means API
● sklean.cluster.KMeans(n_clusters=8,init=