【机器学习】k-means

本文详细介绍了非监督学习中的K-means聚类算法,包括其步骤、API使用、在Instacart Market用户聚类的应用以及性能评估指标。通过聚类散点图展示了K-means的效果,并提醒注意聚类可能陷入局部最优解的问题。
摘要由CSDN通过智能技术生成

一、非监督学习(unsupervised learning)K-means

1)从原始数据到聚类完毕的数据:

2)聚类流程示意图:

二、k-means步骤

1、随机设置K个特征空间内的点作为初始的聚类中心

2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别

3、接着对着标记的聚类中心之后,重新计算出每个聚类的新中心点(平均值)

4、如果计算得出的新中心点与原中心点一样,那么结束,否则重新进行第二部过程

三、k-means API

● sklean.cluster.KMeans(n_clusters=8,init=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值