Java中的小数是怎么存储的?

Java中的小数使用double和float表示,小数属于浮点型(默认为double)。

对于float型的值,则要在数字后加f或F,如12.3F,它在机器中占32位,4个字节来存储,表示精度较低。double是64位。

那么一个小数在Java中是如何存储的呢?

1.Java语言中,float类型数字在计算机中的存储遵循IEEE-754格式标准:

(1)一个浮点数有3部分组成:符号位,指数部分e和底数部分m。

(2)浮点数需要用二进制来表示,所以底数m部分:使用二进制数来表示此浮点数的实际值。

(3)指数可正可负,所以,IEEE规定,此处算出的次方必须减去127才是真正的指数。因此指数部分有偏移量(float为127, double为1023)所以,float类型的指数可从-126到128。

(4)float类型符号位占1位,指数部分占用8bit(1个字节)的二进制数,可表示数值范围为0-255,尾数占23位(因为规格化表示,小数点左边的就是最高位一定为1,最高位省去不存储,在存储中占23bit,实际有24位精度)

(5)double类型符号位占1位,指数部分占11位,尾数占52位(因为规格化表示,小数点左边一定为1,所以实际有53位精度)

根据上面的描述。浮点数科学计数法的个数如下:

SEEEEEEE EMMMMMMM MMMMMMMM MMMMMMMM

S表示浮点数正负;E表示指数加上127后的值后得二进制数据;M表示底数。

下面举两个例子看下小数在Java中的存储过程。

(1)17.625在内存中的存储为:

<1>首先要把17.625换算成二进制:10001.101

整数部分换算成二进制:整数递归的除以2,直到商为0,余数反转。(即:模2取余法)

17 / 2 = 8 --- 1

8 / 2 = 4 --- 0

4 / 2 = 2 --- 0

2 / 2 = 1 --- 0

1 / 2 = 0 --- 1

小数部分:乘以2,直到乘位为0,进位顺序取。(即:乘2取整法)

按如下算法进行: 

1)首先给小数部分乘2,得到的数,如果小数点前为1;则计1,为0,则计0。 

2)再对剩下的小数部分乘2,再计出1或0。 

3)重复以上步骤,直至达到需要的精度。

0.625 x 2 = 1.3   --- 计为1

0.3 x 2 = 0.6       --- 计为0

0.6 x 2 = 1.2       --- 计为1

0.2 x 2 = 0.4       --- 计为0

 ......(算到需要的精度为止) 

再例如:

0.5 x 2 = 1.0     --- 计为1

0 x 2 = 0    --- 结束

所以:0.5(D) = 0.1(B)

      十进制      二进制

<2>得到17.625的二进制,再将10001.101右移,直到小数点前只剩1位:

1.0001101 * 2^4,右移了四位,这个时候,二进制的底数和指数就出来了。

底数:因为小数点前必为1,所以IEEE规定只记录小数点后的就好。所以,此处的底数为:0001101,

指数:实际为4,必须加上127(转出的时候,减去127),所以为131。也就是10000011,

符号部分是正数,所以是0。

综上所述,17.625在内存中的存储格式是:0(符号位)1000001 1(指数)0001101 00000000 00000000(底数) 

(2)再看一个例子float 0.6

<1>把十进制转2进制

0.6的二进制表示(乘2取整,顺序表示):.1001 1001 1001 1001 1001 1001 1001 ... 无限循环下去。

<2>计算尾数部分

把.1001 1001 1001 1001 1001 1001 1001 ...规格化表示(小数点移到第一个非0书右边)就是:

1.001 1001 1001 1001 1001 1001 1001 ...,右移了1位。

由于规格化表示的数小数点左边一定为1,把这个1舍弃,并保留float尾数能表示的23位,最终尾数部分是:

001 1001 1001 1001 1001 1001

<3>计算指数部分: 由于计算尾数时右移了1位,相当于乘以2的负1次,所以指数为-1,加上float偏移量127,最后指数为126, 二进制表示为 0111 1110

<4>符号部分: 0.6为正数,符号位为0

最终0.6在计算机中的表示就是:

符号位    指数              尾数

   0    0111 1110  001 1001 1001 1001 1001 1001

(3)现在再从这个2进制来计算10进制数:(尾数*2的指数 )

符号位0--> 为正

指数 0111 1110:为126, 减去偏移量127,结果为-1.

尾数 001 1001 1001 1001 1001 1001: 规格化的时候小数点左边去掉了一个1,现在加上:

1.001 1001 1001 1001 1001 1001,转为10进制就是:

1*2^0 + 1*2^-3 + 1*2^-4 + .....= 1.19999992847442626953125

1.19999992847442626953125 * (2^-1) = 0.599999964237213134765625

所以最终结果是一个无限接近于0.6而不能精确表示0.6。在计算机中浮点数就是表示的近似值。

参考:(1)https://www.cnblogs.com/chenmingjun/p/8415464.html

           (2)https://bbs.csdn.net/wap/topics/360184754

  • 6
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值