题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
分析:因为n级台阶,第一步有n种跳法:跳1级、跳2级、到跳n级
跳1级,剩下n-1级,则剩下跳法是f(n-1)
跳2级,剩下n-2级,则剩下跳法是f(n-2)
所以f(n) = f(n-1) + f(n-2) + ... + f(1)
因为f(n-1) = f(n-2) + f(n-3 )+ ... + f(1)
所以f(n) = 2 * f(n-1)。
根据f(1) = 1,f(n) = 2 * f(n-1),可以得出f(n) = 2^(n-1)。
或者可以这么分析:每个台阶都有跳与不跳两种情况(除了最后一个台阶),最后一个台阶必须跳。所以共用2^(n-1)种情况。
第一种方法使用递归求解的代码如下:
public class Solution {
public static void main(String[] args) {
Long begintime = System.nanoTime();
int result = JumpFloorII(10);
Long endtime = System.nanoTime();
System.out.println("result="+result+";用时:"+(endtime-begintime)+"ns");
}
public static int JumpFloorII(int target) {
if (target < 1) {
return 0;
} else if (target == 1) {
return 1;
} else {
return 2 * JumpFloorII(target - 1);
}
}
}
程序运算结果:
该算法的时间复杂度是O(n),和求阶乘的时间复杂度类似。这种方法属于自顶向下的算法。
也可以使用自底向上的方法解决这个问题。代码如下:
第二种方法使用循环求解的代码如下:
public class Solution {
public static void main(String[] args) {
Long begintime = System.nanoTime();
int result = JumpFloorII(10);
Long endtime = System.nanoTime();
System.out.println("result="+result+";用时:"+(endtime-begintime)+"ns");
}
public static int JumpFloorII(int target) {
if(target < 1){
return 0;
}
if(target == 1){
return 1;
}
int a = 1;
int temp = 1;
for(int i = 2; i <= target; i++){
temp = 2 * a;
a = temp;
}
return temp;
}
}
程序执行结果:
这种算法的时间复杂度是O(n)。
也可以使用动态规划解决这个问题,这时的[状态转移方程]就变成了F(n) = 2*F(n-1)。
第三种方法使用动态规划求解的代码如下:
public class Solution {
public static void main(String[] args) {
Long begintime = System.nanoTime();
int result = JumpFloorII(10);
Long endtime = System.nanoTime();
System.out.println("result="+result+";用时:"+(endtime-begintime)+"ns");
}
public static int JumpFloorII(int target) {
//第n次走的台阶个数是第n-1次走的台阶个数的2倍
//所以状态转移方程为 dp[i] = 2*dp[i-1];
int[] dp = new int[target+1];
dp[0] = dp[1] = 1;
for (int i=2; i<=target; ++i) {
dp[i] = 2*dp[i-1];
}
return dp[target];
}
}
程序执行结果:
使用动态规划循环执行了n-1次,所以这里动态规划算法的时间复杂度是O(n)。
或者可以直接从公式入手,根据推导出的公式f(n) = 2^(n-1),那么JumpFloorII方法就可以变成如下。
第四种方法使用公式求解的代码如下:
public int JumpFloorII(int target) {
if (target < 1) {
return 0;
}else {
return (int) Math.pow(2, target-1);
}
}
为了更加提高效率,可以把乘法变为左移运算,因为在计算机中移位运算的操作效率要优于乘除法。移位运算可以把算法的时间复杂度降到常数级别,效率还是很高的。但是要注意对于移位运算,答案不要溢出,虽然不用处理但是在面试时要考虑溢出的问题并说明。
第五种方法使用移位运算求解的代码如下:
public int JumpFloorII(int target) {
if (target < 1) {
return 0;
}else {
return 1<<--target;
}
}
或者这样:
public static int JumpFloorII(int target) {
if(target < 1) return 0;
if(target == 1) return 1;
return 2<<(target-2);
}
这个也要考虑内存溢出的问题。上面两个就是移位运算的解法,移位运算解法的时间复杂度是O(1)。
参考:(1)https://blog.csdn.net/qq_27703417/article/details/70983672