fzu 1775 Counting Binary Trees 卡特兰数取模 计算第n个卡特兰数%m 1 ≤ n ≤ 100,000, 1 ≤ m ≤ 10^9

Problem Description

There are 5 distinct binary trees of 3 nodes:

Let T(n) be the number of distinct non-empty binary trees of no more than n nodes, your task is to calculate T(n) mod m.

Input

The input contains at most 10 test cases. Each case contains two integers n and m (1 ≤ n ≤ 100,000, 1 ≤ m ≤ 10^9) on a single line. The input ends with n = m = 0.

Output

For each test case, print T(n) mod m.

Sample Input

3 100
4 10
0 0

Sample Output

8
2
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
//1 ≤ n ≤ 100,000, 1 ≤ m ≤ 10^9
//计算第n个卡特兰数%m  即h(n)=(2n)!/(n!*(n+1)!)%m
//h(0)=1,h(i)=h(i-1)*(4*i-2)/(i+1)。
/**
当式子带除法时, 这里的做法是把除法变为乘法, 再用上面的方法来解.
我们知道,a / b % m == a * ((b^-1) % m) % m, 其中b^-1是b关于m的
逆元, 可用扩展欧几里德求得,但是前提条件是b与m互质, 而这题的m是
任意的, 所以不能直接求逆元, 但可以通过一些处理使得互质条件满足.
其实只需要把答案看做两部分的乘积:一部分是与m互素的,这一部分的
乘法直接计算,除法改成乘逆元就行了;另一部分是若干个m的素因子的
乘积,因为m<1,000,000,000,所以m的不同素因子不会太多,用一个数
组记录每一个素因子的数量就行。这一部分的乘法(4*i-2)就是把记录的
素因子数量相加,除法(i+1)就是把记录的素因子数量相减。最后计算这
两部分的乘积对m的取模,也就是h(i)%m,递推求和。
*/
int n,m;
int sm[1000],p;//将m分解质因数
int sa[1000];//4*i-2 和 i+1 分解质因数
//素数筛选
int flag[50000],pri[50000],pl;
void prime()
{
    for(int i=2;i<50000;i++)
    {
        if(flag[i]==0) pri[pl++]=i;
        for(int j=0;j<pl&&i*pri[j]<50000;j++)
        {
            flag[i*pri[j]]=1;
            if(i%pri[j]==0) break;
        }
    }
}
int extgcd(int a,int b,int &x,int &y)
{
    if(b==0)
    {
        x=1,y=0;
        return a;
    }
    int r=extgcd(b,a%b,x,y);
    int t=x;x=y;y=t-a/b*y;
    return r;
}
__int64 cal()
{
    __int64 sum=1,res=1;//n=1时 sum=1 后面从2开始
    p=0;
    int tm=m;//将m分解质因数
    for(int i=0;pri[i]*pri[i]<=tm;i++)
    {
        if(tm%pri[i]==0)
        {
            sm[p++]=pri[i];
            while(tm%pri[i]==0) tm/=pri[i];
        }
    }
    if(tm>1) sm[p++]=tm;//important
    memset(sa,0,sizeof(sa));
    for(int i=2;i<=n;i++)
    {
        int t;
        t=4*i-2;
        for(int j=0;j<p;j++)
        {
            while(t%sm[j]==0)
            {
                sa[j]++,t/=sm[j];
            }
        }
        res=res*t%m;
        t=i+1;
        for(int j=0;j<p;j++)
        {
            while(t%sm[j]==0)
            {
                sa[j]--,t/=sm[j];
            }
        }
        if(t>1)
        {
            int x,y;
            int r=extgcd(t,m,x,y);
            x=(x%m+m)%m;
            res=res*x%m;
        }
        __int64 tmp=res;
        for(int j=0;j<p;j++)
        {
            for(int k=0;k<sa[j];k++)
            {
                tmp=tmp*sm[j]%m;
            }
        }
        sum=(sum+tmp)%m;
    }
    return sum;
}
int main()
{
    prime();
    while(scanf("%d%d",&n,&m)==2&&n)
    {
        __int64 ans=cal();
        printf("%I64d/n",ans);
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值