Oil Deposits
The GeoSurvComp geologic survey company is responsible for detecting underground oil deposits. GeoSurvComp works with one large rectangular region of land at a time, and creates a grid that divides the land into numerous square plots. It then analyzes each plot separately, using sensing equipment to determine whether or not the plot contains oil. A plot containing oil is called a pocket. If two pockets are adjacent, then they are part of the same oil deposit. Oil deposits can be quite large and may contain numerous pockets. Your job is to determine how many different oil deposits are contained in a grid.
Input
The input contains one or more grids. Each grid begins with a line containing m and n, the number of rows and columns in the grid, separated by a single space. If m = 0 it signals the end of the input; otherwise 1 <= m <= 100 and 1 <= n <= 100. Following this are m lines of n characters each (not counting the end-of-line characters). Each character corresponds to one plot, and is either `*', representing the absence of oil, or `@', representing an oil pocket.
Output
are adjacent horizontally, vertically, or diagonally. An oil deposit will not contain more than 100 pockets.
Sample Input
1 1
*
3 5
*@*@*
**@**
*@*@*
1 8
@@****@*
5 5
****@
*@@*@
*@**@
@@@*@
@@**@
0 0
Sample Output
0
1
2
2
题意描述:
求出网格中油田的个数,’@’代表油田,八个方向相邻的油田为一块。
解题思路:
啊哈算法中宝岛探险模板题,在主函数中利用循环查找所有方格,若方格为’@’,且还未查找过调用函数查找到所有相邻的油田,油田数加一。
#include<stdio.h>
#include<string.h>
char a[110][110];
int book[110][110],n,m,sum;
void dfs(int x,int y);
int main()
{
int i,j,num;
while(scanf("%d%d",&n,&m))
{
if(n==0)
break;
for(i=0;i<n;i++)
scanf("%s",a[i]);
memset(book,0,sizeof(book));
sum=0;
num=0;
for(i=0;i<n;i++)
for(j=0;j<m;j++)
{
if(book[i][j]==0&&a[i][j]=='@')
{
dfs(i,j);
if(sum>=0)
num++;
}
sum=0;
}
printf("%d\n",num);
}
return 0;
}
void dfs(int x,int y)
{
int next[8][2]={0,1,1,1,1,0,1,-1,0,-1,-1,-1,-1,0,-1,1};
int k,tx,ty;
for(k=0;k<8;k++)
{
tx=x+next[k][0];
ty=y+next[k][1];
if(tx<0||tx>n-1||ty<0||ty>m-1)
continue;
if(a[tx][ty]=='@'&&book[tx][ty]==0)
{
sum++;
book[tx][ty]=1;
dfs(tx,ty);
}
}
return;
}