高维空间中椭圆的基本方程

二维空间下椭圆基本方程为

                                                    (1)

这个是我们大家都熟知的,但是,如果背景空间不是二维空间,而是N维欧式空间中的椭圆,其表达式应该是什么样式的?
为了对这个问题论证比较严格,在下述过程中采用了微分几何中的一些思想,而且用了微分几何中的一些标记。但是如果没有微分几何的基础也能够看懂。这个问题的本质在于坐标变换。只要对坐标变换有一些了解,理解以下内容并没有难度。
椭圆方程写为参数方程形式为:

                                             (2)

 

其中,x上标1和2,本质意思是表示在第一轴和第二轴上的分量

这个参数方程可以看做是以下参数方程的简写:

                                                            (3)


对原理不要求理解的可以忽略双线内的这几段,对方法掌握无影响

《======================================================

然后(2)可以写为另一种等价的形式:

                                                      (4) 

(3)按照同样的方法也可以写为同样的形式:

            (5)

其中,是微分几何中对于坐标基矢的表示,对应于我们在三维直角坐标系中习惯用的,由于是N维欧式空间,用只能表示三维,不方便,所以直接用微分几何的符号,只需记住,这两组符号是等价的即可。

================================================================================》


于是,(4)可以将坐标基矢全部省略,写为

                                            (6)

其中,

                                         (7)


在新的坐标系中,椭圆在各个坐标轴方向的分量为

                                                    (8)


《============================
也就是
          (9)
===================================》

两组坐标矢量之间的关系,对应的一组变换矩阵,外加一个平移矢量。这个变换矩阵可以是奇异的,也可以死非奇异的,都可以。变换示意图如下:


然后,带 ' 的x和不带 ’的x之间的关系可以表示为:
           (10) 

于是,根据(7)可以得到,
                                            (11)
将(2)带入得 

    
                           (12) 
整理得
                                       (13) 
或是

                                           (14) 

所以,得到结论,高维空间中椭圆方程为普通形式为(13)或者(14).


但有点需要注意, (13)或者(14) 得到的结果并不一定一定是椭圆,还可能是椭圆的两种退化形式,椭圆的偏心率e所在的范围是(0,1),不包括边界,所以两种退化形式,一个是偏心率e=0时,即为圆,另一个是偏心率e=1,退化为线段。是否椭圆,还有一些判别公式,相关理论还没整理完成,暂时不论证了。


该套方法可以将低维空间中任意函数曲线扩展到高维空间中,并不只限于椭圆

  • 2
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值