学习尚硅谷老师的springcloud,摘抄和总结以及分类笔记!
只要学不死,就往死里学!
承接自上一个SpringBoot和SpringCloud整合Eureka。
一、概述:
1.1.Ribbon是什么?
Spring Cloud Ribbon是基于Netflix Ribbon实现的一套客户端 负载均衡的工具。
简单的说,Ribbon是Netflix发布的开源项目,主要功能是提供客户端的软件负载均衡算法,将Netflix的中间层服务连接在一起。Ribbon客户端组件提供一系列完善的配置项如连接超时,重试等。简单的说,就是在配置文件中列出Load Balancer(简称LB)后面所有的机器,Ribbon会自动的帮助你基于某种规则(如简单轮询,随机连接等)去连接这些机器。我们也很容易使用Ribbon实现自定义的负载均衡算法。
1.2.Ribbon能干吗?
LB,即负载均衡**(Load Balance**),在微服务或分布式集群中经常用的一种应用。
负载均衡简单的说就是将用户的请求平摊的分配到多个服务上,从而达到系统的HA。
(HA=高可用)常见的负载均衡有软件Nginx,LVS,硬件 F5等。
相应的在中间件,例如:dubbo和SpringCloud中均给我们提供了负载均衡,SpringCloud的负载均衡算法可以自定义。
LB分两类:集中式LB和进程式LB(前者偏硬件,后者偏软件)
集中式LB:
即在服务的消费方和提供方之间使用独立的LB设施(可以是硬件,如F5, 也可以是软件,如nginx), 由该设施负责把访问请求通过某种策略转发至服务的提供方;
进程内LB:
将LB逻辑集成到消费方,消费方从服务注册中心获知有哪些地址可用,然后自己再从这些地址中选择出一个合适的服务器。
Ribbon就属于进程内LB,它只是一个类库,集成于消费方进程,消费方通过它来获取到服务提供方的地址。
1.3.网址资料:
github上面的Ribbon源码
二、Ribbon配置初步:
注意:这里提到的客户端不是euraka的client而是consumer消费者才是客户端。
2.1.修改consumer项目:
折腾了几天以为是版本的问题,结果是写错了
spring-cloud-starter-eureka 都有Stater这个关键字
spring-cloud-starter-ribbon
spring-cloud-starter-config
版本调回以前的:
Dalston.SR1
1.5.9.RELEASE
2.1.1修改Pom.xml文件
<!-- Ribbon开始:添加Ribbon,添加client,添加config -->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-eureka</artifactId>
</dependency>
<!-- -netflix -->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-ribbon</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-config</artifactId><!-- 和eureka-client相关 -->
</dependency>
<!-- :Ribbon结束 -->
2.1.2. 修改application.yml 追加eureka的服务注册地址
以前:
server:
port: 80
修改后:
server:
port: 80
eureka:
client:
register-with-eureka: false #不向注册中心注册自己
service-url:
defaultZone: http://eureka7001.com:7001/eureka/,http://eureka7002.com:7002/eureka/,http://eureka7003.com:7003/eureka/
2.1.3.对ConfigBean进行新注解@LoadBalanced 获得Rest时加入Ribbon的配置
只是加上了@LoadBalanced注解 //客户端 负载均衡的工具
@Configuration
public class ConfigBean {//springboot优化了spring的配置文件 applicationContext.xml 等同于@Configration配置
//configBean = applicationContext.xml
@Bean
@LoadBalanced //客户端 负载均衡的工具。实现均衡负载
public RestTemplate getRestTemplate() {//用于发Rest请求,在消费者controller层次调用
return new RestTemplate();
}
}
2.1.4.主启动类DeptConsumer80_App添加@EnableEurekaClient
@SpringBootApplication
@EnableEurekaClient //client端
public class DeptConsumer80_App {
public static void main(String[] args) {
SpringApplication.run(DeptConsumer80_App.class, args);
}
}
2.1.5.修改DeptController_Consumer客户端访问类
只是将controller类里面的REST_URL_PREFIX替换值为:spring: application: name的大写
即是:private static final String REST_URL_PREFIX = "http://MICROSERVICECLOUD-DEPT";
@RestController//依然加上restcontroller注解
public class DeptController_Consumer {
// private static final String REST_URL_PREFIX="http://localhost:8001";//直接访问的8001端口没有通过euraka-server
/*
* spring: application: name: microservicecloud-dept 对外暴露的微服务名字,8001provider类的yml配置
*/
private static final String REST_URL_PREFIX = "http://MICROSERVICECLOUD-DEPT";
@Autowired
private RestTemplate restTemplate;//rest模板
// RestTemplate提供了多种便捷访问远程Http服务的方法,
// 是一种简单便捷的访问restful服务模板类,是Spring提供的用于访问Rest服务的客户端模板工具集
@RequestMapping(value = "consumer/dept/add") //注意这里的consumer没有加上,/consumer
public boolean add(Dept dept) {//在配置文件里面配好了,可以直接用
return restTemplate.postForObject(REST_URL_PREFIX+"/dept/add", dept, boolean.class);
}
@RequestMapping(value = "consumer/dept/get/{id}")
public Dept get(@PathVariable long id) {//在配置文件里面配好了,可以直接用
return restTemplate.getForObject(REST_URL_PREFIX+"/dept/get/"+id, Dept.class);
}
@SuppressWarnings("unchecked")
@RequestMapping(value = "consumer/dept/list")
public List<Dept> list() {//在配置文件里面配好了,可以直接用
return restTemplate.getForObject(REST_URL_PREFIX+"/dept/list", List.class);
}
//测试@EnableDiscoveryClient,消费端可以调用服务发现
@RequestMapping(value="/consumer/dept/discovery")
public Object discovery()
{
return restTemplate.getForObject(REST_URL_PREFIX+"/dept/discovery", Object.class);
}
}
2.2.测试
依次启动server工程,再者是provider工程,再者是consumer工程。
测试
http://localhost/consumer/dept/get/1
http://localhost/consumer/dept/list
http://localhost/consumer/dept/add?dname=大数据部
总结
Ribbon和Eureka整合后Consumer可以直接调用服务而不用再关心地址和端口号
三、Ribbon负载均衡
Ribbon在工作时分成两步
第一步先选择 EurekaServer ,它优先选择在同一个区域内负载较少的server.
第二步再根据用户指定的策略,在从server取到的服务注册列表中选择一个地址。
其中Ribbon提供了多种策略:比如轮询(默认策略)、随机和根据响应时间加权。
3.1参照provider工程,新建两份工程
参考microservicecloud-provider-dept-8001,新建两份,分别命名为8002,8003
几乎是将microservicecloud-provider-dept-8001完全拷贝下来;
3.2.新建各自的数据库
8002端口对应:cloudDB02。8003端口对应:cloudDB03
sql脚本:
-- 8002:
DROP DATABASE IF EXISTS cloudDB02;
CREATE DATABASE cloudDB02 CHARACTER SET UTF8;
USE cloudDB02;
CREATE TABLE dept
(
deptno BIGINT NOT NULL PRIMARY KEY AUTO_INCREMENT,
dname VARCHAR(60),
db_source VARCHAR(60)
);
INSERT INTO dept(dname,db_source) VALUES('开发部',DATABASE());
INSERT INTO dept(dname,db_source) VALUES('人事部',DATABASE());
INSERT INTO dept(dname,db_source) VALUES('财务部',DATABASE());
INSERT INTO dept(dname,db_source) VALUES('市场部',DATABASE());
INSERT INTO dept(dname,db_source) VALUES('运维部',DATABASE());
SELECT * FROM dept;
-- 8003:
DROP DATABASE IF EXISTS cloudDB03;
CREATE DATABASE cloudDB03 CHARACTER SET UTF8;
USE cloudDB03;
CREATE TABLE dept
(
deptno BIGINT NOT NULL PRIMARY KEY AUTO_INCREMENT,
dname VARCHAR(60),
db_source VARCHAR(60)
);
INSERT INTO dept(dname,db_source) VALUES('开发部',DATABASE());
INSERT INTO dept(dname,db_source) VALUES('人事部',DATABASE());
INSERT INTO dept(dname,db_source) VALUES('财务部',DATABASE());
INSERT INTO dept(dname,db_source) VALUES('市场部',DATABASE());
INSERT INTO dept(dname,db_source) VALUES('运维部',DATABASE());
SELECT * FROM dept;
3.3.拷贝文件和修改文件
3.4.测试:
1.启动3个eureka集群配置,启动3微服务
自测微服务通过:
http://localhost:8001/dept/list
http://localhost:8002/dept/list
http://localhost:8003/dept/list
2.启动consumer工程
http://localhost/consumer/dept/list
结果为:
总结:
Ribbon其实就是一个软负载均衡的客户端组件,
他可以和其他所需请求的客户端结合使用,和eureka结合只是其中的一个实例。
四.Ribbon核心组件IRule
IRule的使用非常简单:
在consumer工程的配置类上:
@Bean
public IRule myRule()
{
return new RandomRule();//随机
}
测试:
依次启动server工程,provider工程,consumer工程
http://localhost/consumer/dept/list
可以看到查询的内容出现的顺序为随机
Ribbon提供了七种算法,
1.RoundRobinRule
RoundRobinRule 为轮换算法
2.RandomRule
RandomRule:随机算法
3.AvailabilityFilteringRule
会先过滤掉由于多次访问故障而处于断路器跳闸状态的服务, 还有并发的连接数量超过阈值的服务,然后对剩余的服务列表按照轮询策略进行访问
4.WeightedResponseTimeRule
根据平均响应时间计算所有服务的权重,响应时间越快服务权重越大被选中的概率越高。
刚启动时如果统计信息不足,则使用RoundRobinRule策略,等统计信息足够,会切换到WeightedResponseTimeRule
5.RetryRule:
先按照RoundRobinRule的策略获取服务,如果获取服务失败则在指定时间内会进行重试,获取可用的服务。
6.BestAvailableRule:
会先过滤掉由于多次访问故障而处于断路器跳闸状态的服务,然后选择一个并发量最小的服务
7.ZoneAvoidanceRule:
默认规则,复合判断server所在区域的性能和server的可用性选择服务器
RoundRobinRule 轮换算法,源码:
/*
*
* Copyright 2013 Netflix, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
package com.netflix.loadbalancer;
import com.netflix.client.config.IClientConfig;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;
/**
* The most well known and basic load balancing strategy, i.e. Round Robin Rule.
*
* @author stonse
* @author Nikos Michalakis <nikos@netflix.com>
*
*/
public class RoundRobinRule extends AbstractLoadBalancerRule {
private AtomicInteger nextServerCyclicCounter;
private static final boolean AVAILABLE_ONLY_SERVERS = true;
private static final boolean ALL_SERVERS = false;
private static Logger log = LoggerFactory.getLogger(RoundRobinRule.class);
public RoundRobinRule() {
nextServerCyclicCounter = new AtomicInteger(0);
}
public RoundRobinRule(ILoadBalancer lb) {
this();
setLoadBalancer(lb);
}
public Server choose(ILoadBalancer lb, Object key) {
if (lb == null) {
log.warn("no load balancer");
return null;
}
Server server = null;
int count = 0;
while (server == null && count++ < 10) {
List<Server> reachableServers = lb.getReachableServers();
List<Server> allServers = lb.getAllServers();
int upCount = reachableServers.size();
int serverCount = allServers.size();
if ((upCount == 0) || (serverCount == 0)) {
log.warn("No up servers available from load balancer: " + lb);
return null;
}
int nextServerIndex = incrementAndGetModulo(serverCount);
server = allServers.get(nextServerIndex);
if (server == null) {
/* Transient. */
Thread.yield();
continue;
}
if (server.isAlive() && (server.isReadyToServe())) {
return (server);
}
// Next.
server = null;
}
if (count >= 10) {
log.warn("No available alive servers after 10 tries from load balancer: "
+ lb);
}
return server;
}
/**
* Inspired by the implementation of {@link AtomicInteger#incrementAndGet()}.
*
* @param modulo The modulo to bound the value of the counter.
* @return The next value.
*/
private int incrementAndGetModulo(int modulo) {
for (;;) {
int current = nextServerCyclicCounter.get();
int next = (current + 1) % modulo;
if (nextServerCyclicCounter.compareAndSet(current, next))
return next;
}
}
@Override
public Server choose(Object key) {
return choose(getLoadBalancer(), key);
}
}
五、自定义Ribbon
5.1.修改consumer的主启动类
为主启动类加上@RibbonClient注解
参数解释:
name:表示为那个微服务提供自定义Ribbon的IRule算法
configuration:表示提供算法的类
@SpringBootApplication
@EnableEurekaClient //client端
@RibbonClient(name="MICROSERVICECLOUD-DEPT",configuration = MySelfRule.class)
//表示对MICROSERVICECLOUD-DEPT这个微服务,使用自定义的MySelfRule负载均衡算法。
public class DeptConsumer80_App {
public static void main(String[] args) {
SpringApplication.run(DeptConsumer80_App.class, args);
}
}
5.2.新建算法类 (包:com.atguigu.myrule 类:MySelfRule.java)
@Configuration
public class MySelfRule
{
@Bean
public IRule myRule()
{
return new RandomRule();//使用RandomRule做测试;
}
}
官方文档明确给出了警告:
- 这个自定义配置类不能放在@ComponentScan注解所扫描的当前包下以及子包下,
否则我们自定义的这个配置类就会被所有的Ribbon客户端所共享,也就是说 我们达不到特殊化定制的目的了。
(@SpringBootApplication包含了@ComponentScan,
我的理解:自定义算法类,不能放在主包及其子包下。主包即是和主启动类同级的包。)
5.3.自定义算法,满足轮换,每轮单个服务五次
新需求:依旧轮询策略,但是加上新需求,每个服务器要求被调用5次。也即
以前是每台机器一次,现在是每台机器5次
IRule架构图:
修改源码:
public class RoundRobinRule_YGJ extends AbstractLoadBalancerRule {
private int total = 0;
private int currentIndex = 0;
public Server choose(ILoadBalancer lb, Object key) {
if (lb == null) {
return null;
}
Server server = null;// server为null
while (server == null) {// server为null则进入循环
if (Thread.interrupted()) {
//中断此线程(此线程不一定是当前线程,而是指调用该方法的Thread实例所代表的线程)
return null;
}
List<Server> upList = lb.getReachableServers();// 还存活的线程
List<Server> allList = lb.getAllServers();// 所有的线程
int serverCount = allList.size();// 所有线程的总数
if (serverCount == 0) {
/*
* No servers. End regardless of pass, because subsequent passes only get more
* restrictive.
*/
return null;
}
// int index = chooseRandomInt(serverCount);
// server = upList.get(index);
if(total<5)
{
server = upList.get(currentIndex);
total++;
}else
{
total=0;
currentIndex++;
if(currentIndex>=upList.size())
{
currentIndex=0;
}
}
if (server == null) {
/*
* The only time this should happen is if the server list were somehow trimmed.
* This is a transient condition. Retry after yielding.
*/
Thread.yield();// 是当前线程从运行状态,进入就绪状态。
continue;
}
if (server.isAlive()) {
return (server);
}
// Shouldn't actually happen.. but must be transient or a bug.
server = null;
Thread.yield();
}
return server;
}
protected int chooseRandomInt(int serverCount) {
return ThreadLocalRandom.current().nextInt(serverCount);
}
@Override
public Server choose(Object key) {
return choose(getLoadBalancer(), key);
}
@Override
public void initWithNiwsConfig(IClientConfig clientConfig) {
// TODO Auto-generated method stub
}
}