DSST算法详解

本文深入解析了DSST(Discriminative Scale Space Tracker)算法,这是一种利用判别相关滤波器进行位置和尺度估计的视觉跟踪方法。DSST将位置滤波器和尺度滤波器相结合,通过精确的尺度估计提高跟踪性能。算法分为训练和检测两个阶段,其中位置估计基于MOSSE滤波器,尺度估计采用一维相关滤波。通过这种方式,DSST能够有效地处理目标尺度变化,提高跟踪的鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文: Accurate Scale Estimation for Robust Visual Tracking


Martin Danelljan, Gustav Häger, Fahad Khan, Michael Felsberg.  Accurate Scale Estimation for Robust Visual Tracking.  In Proceedings of the British Machine Vision Conference (BMVC), 2014.



一、引言

论文中主要描述了一种在视觉跟踪中精准的尺度估计的方法,基于此尺度估计方法提出了DSST(Discriminatiive Scale Space Tracker)算法。该算法分为位置滤波器(Translation Filter)和尺度滤波器(Scale Filter)。这种精准的尺度估计方法可以和任意其他的没有尺度估计的跟踪算法结合。下图是作者给出的算法的效果。




DSST算法采用判别相关滤波器(discriminative correlation filters)来确定位置信息,使用文中提出的尺度估计方法确定尺度信息。




二、Discriminative Correlation Filters

位置估计的方法基于MOSSE跟踪方法,算法通过学习得到一个位置的相关滤波器,用这个滤波器来确定目标在下一帧的位置。


MOSSE滤波器使用一组灰度图像块  f1,f2 ,  f3 ….ft作为训练样本,对应的滤波器的响应输出为g1 , g2 ,  g3 …. gt  (通常用高斯函数构建得出) 。最佳相关滤波器ht需要满足下式。





其中  fi,gi ,ht的均为 M x N 的矩阵,星号代表循环相关,第二个等号根据Parseval定理得出。大写字母代表相应的离散傅里叶变换(DFT),上划线表示复共轭。上式最小化结果可得:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值