1. 引言
KCF(Kernelized Correlation Filters,核化相关滤波器)是一种高效的单目标跟踪算法,由João F. Henriques等人在2015年提出。该算法基于相关滤波(Correlation Filter)理论,结合核技巧(Kernel Trick)和循环矩阵(Circulant Matrix)性质,在计算效率与跟踪精度之间取得了良好的平衡。KCF算法因其高速度(可达数百FPS)和较高的鲁棒性,成为目标跟踪领域的重要基准方法之一。
2. 核心原理
KCF算法的核心思想是通过训练一个滤波器,使其在目标位置处产生最强的响应,从而在后续帧中快速定位目标。其主要理论包括:
2.1 相关滤波器(Correlation Filter)
-
岭回归(Ridge Regression):KCF使用岭回归训练一个线性分类器,最小化预测误差