König定理及证明

König定理表明,二分图的最大匹配数等同于最小点覆盖数。本文介绍了如何理解这个定理,并通过证明解释了为何最大匹配的点能够覆盖所有路径。此外,还提及了一个可能的推论:最小路径覆盖等于节点数减去最大匹配数,但该推论在无向无环图中的情况尚未得出结论。
摘要由CSDN通过智能技术生成

König定理的内容是,一个二分图中的最大匹配数等于这个图中的最小点覆盖数。看过Matrix67大牛的证明后感觉证的很累赘,于是自己写一个。与最大匹配相关的东西可以在这里看到。

假如已知最大匹配M,由最大匹配的定义可知,二分图K中的两个集合A,B中已经取出了最多个匹配点,即取出了最多个不共用一个点的路径。如果K中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值