通过网络流证明二分图König定理

本文详细地通过网络流的思路,证明了二分图中最小顶点覆盖数等于原图最大匹配的基数,利用流图和割的概念展示了两者之间的对应关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

证明König定理:二分图的最小点覆盖数等于原图最大匹配

思路来源于二分图König定理的网络流思路证明,在此写成完整的证明。

通过证明二分图 G G G最大匹配的基数=流图 G ′ G' G的最大流=流图 G ′ G' G的最小割=二分图 G G G的最小顶点覆盖的基数来验证Konig定理。

根据 G G G构造对应的流图 G ′ G' G,其中 L L L R R R之间的每条边容量设为无限。
构造二分图对应的流图

由二分图G的匹配基数和对应流图 G ′ G' G中流的一一对应性,可知二分图 G G G的最大匹配的基数=流图 G ′ G' G的最大流。

流图 G ′ G' G的最大流=流图 G ′ G' G的最小割。

下面证明 G ′ G' G​​中容量有限的割的容量和G的顶点覆盖的基数一一对应。

  1. 对于 G ′ G' G中任一容量为 k ( k ≠ ∞ ) k( k \neq \infin) k(k=)的割 S S S T T T,都有对应的 G G G中基数为 k k k的顶点覆盖:

S ∩ L = L S 、 S ∩ R = R S 、 T ∩ L = L T 、 T ∩ R = R T S \cap L =L_S、S \cap R =R_S、T \cap L =L_T、T \cap R =R_T SL=LSSR=RSTL=LTTR=RT

不存在边从 L S L_S LS中节点指向 R T R_T RT中节点,否则割容量将为无限。 L L L R R R当中的边只可能从 L S L_S LS指向 R S R_S RS L T L_T LT指向 R T R_T RT L T L_T LT指向 R S R_S RS

因此有 c a p ( S , T ) = ∑ v ∈ L T c ( s , v ) + ∑ v ∈ R S c ( v , t ) = ∣ L T ∣ + ∣ R S ∣ = k cap(S,T)=\sum_{v \in L_T} c(s,v)+ \sum_{v \in R_S} c(v,t)=|L_T|+|R_S| =k cap(S,T)=vLTc(s,v)+vRSc(v,t)=LT+RS=k

由于 L L L R R R当中的边仅连接 L S L_S LS R S R_S RS L T L_T LT R T R_T RT L T ∪ R S L_T \cup R_S LTRS即为 G G G中一个容量为 k k k​一个顶点覆盖。

在这里插入图片描述

  1. G G G中任一基数为 k k k的顶点覆盖 Q Q Q,都有 G ′ G' G中容量为 k ( k ≠ ∞ ) k( k \neq \infin) k(k=)的割 S S S T T T

L ∩ Q = L Q 、 R ∩ Q = R Q 、 L − L Q = L ¬ Q 、 R − R Q = R ¬ Q L \cap Q =L_Q、R \cap Q =R_Q、L-L_Q =L_{\lnot Q}、R - R_Q =R_{\lnot Q} LQ=LQRQ=RQLLQ=L¬QRRQ=R¬Q

由于 L L L R R R中任意一条边都至少有一个端点在 Q Q Q中,因此没有边从 L ¬ Q L_{\lnot Q} L¬Q指向 R ¬ Q R_{\lnot Q} R¬Q L L L R R R当中的边只可能从 L Q L_Q LQ指向 R Q R_Q RQ L ¬ Q L_{\lnot Q} L¬Q指向 R Q R_Q RQ L Q L_Q LQ指向 R ¬ Q R_{\lnot Q} R¬Q

构造割 S = s ∪ L ¬ Q ∪ R Q S={s} \cup L_{\lnot Q} \cup R_Q S=sL¬QRQ T = t ∪ L Q ∪ R ¬ Q T={t} \cup L_{Q} \cup R_{\lnot Q} T=tLQR¬Q,则有 c a p ( S , T ) = ∑ v ∈ L Q c ( s , v ) + ∑ v ∈ R Q c ( v , t ) = ∣ L Q ∣ + ∣ R Q ∣ = k cap(S,T)=\sum_{v \in L_{Q}} c(s,v)+ \sum_{v \in R_Q} c(v,t)=|L_Q|+|R_Q|=k cap(S,T)=vLQc(s,v)+vRQc(v,t)=LQ+RQ=k

在这里插入图片描述

因此,流图 G ′ G' G的最小割=二分图 G G G的最小顶点覆盖的基数。综上,二分图 G G G最大匹配的基数=流图 G ′ G' G的最大流=流图 G ′ G' G的最小割=二分图 G G G的最小顶点覆盖的基数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值