证明König定理:二分图的最小点覆盖数等于原图最大匹配
思路来源于二分图König定理的网络流思路证明,在此写成完整的证明。
通过证明二分图 G G G最大匹配的基数=流图 G ′ G' G′的最大流=流图 G ′ G' G′的最小割=二分图 G G G的最小顶点覆盖的基数来验证Konig定理。
根据
G
G
G构造对应的流图
G
′
G'
G′,其中
L
L
L、
R
R
R之间的每条边容量设为无限。
由二分图G的匹配基数和对应流图 G ′ G' G′中流的一一对应性,可知二分图 G G G的最大匹配的基数=流图 G ′ G' G′的最大流。
流图 G ′ G' G′的最大流=流图 G ′ G' G′的最小割。
下面证明 G ′ G' G′中容量有限的割的容量和G的顶点覆盖的基数一一对应。
- 对于 G ′ G' G′中任一容量为 k ( k ≠ ∞ ) k( k \neq \infin) k(k=∞)的割 S S S、 T T T,都有对应的 G G G中基数为 k k k的顶点覆盖:
设 S ∩ L = L S 、 S ∩ R = R S 、 T ∩ L = L T 、 T ∩ R = R T S \cap L =L_S、S \cap R =R_S、T \cap L =L_T、T \cap R =R_T S∩L=LS、S∩R=RS、T∩L=LT、T∩R=RT
不存在边从 L S L_S LS中节点指向 R T R_T RT中节点,否则割容量将为无限。 L L L与 R R R当中的边只可能从 L S L_S LS指向 R S R_S RS、 L T L_T LT指向 R T R_T RT、 L T L_T LT指向 R S R_S RS。
因此有 c a p ( S , T ) = ∑ v ∈ L T c ( s , v ) + ∑ v ∈ R S c ( v , t ) = ∣ L T ∣ + ∣ R S ∣ = k cap(S,T)=\sum_{v \in L_T} c(s,v)+ \sum_{v \in R_S} c(v,t)=|L_T|+|R_S| =k cap(S,T)=∑v∈LTc(s,v)+∑v∈RSc(v,t)=∣LT∣+∣RS∣=k。
由于 L L L与 R R R当中的边仅连接 L S L_S LS和 R S R_S RS、 L T L_T LT和 R T R_T RT, L T ∪ R S L_T \cup R_S LT∪RS即为 G G G中一个容量为 k k k一个顶点覆盖。
- 对 G G G中任一基数为 k k k的顶点覆盖 Q Q Q,都有 G ′ G' G′中容量为 k ( k ≠ ∞ ) k( k \neq \infin) k(k=∞)的割 S S S、 T T T:
设 L ∩ Q = L Q 、 R ∩ Q = R Q 、 L − L Q = L ¬ Q 、 R − R Q = R ¬ Q L \cap Q =L_Q、R \cap Q =R_Q、L-L_Q =L_{\lnot Q}、R - R_Q =R_{\lnot Q} L∩Q=LQ、R∩Q=RQ、L−LQ=L¬Q、R−RQ=R¬Q
由于 L L L、 R R R中任意一条边都至少有一个端点在 Q Q Q中,因此没有边从 L ¬ Q L_{\lnot Q} L¬Q指向 R ¬ Q R_{\lnot Q} R¬Q。 L L L与 R R R当中的边只可能从 L Q L_Q LQ指向 R Q R_Q RQ、 L ¬ Q L_{\lnot Q} L¬Q指向 R Q R_Q RQ、 L Q L_Q LQ指向 R ¬ Q R_{\lnot Q} R¬Q。
构造割 S = s ∪ L ¬ Q ∪ R Q S={s} \cup L_{\lnot Q} \cup R_Q S=s∪L¬Q∪RQ, T = t ∪ L Q ∪ R ¬ Q T={t} \cup L_{Q} \cup R_{\lnot Q} T=t∪LQ∪R¬Q,则有 c a p ( S , T ) = ∑ v ∈ L Q c ( s , v ) + ∑ v ∈ R Q c ( v , t ) = ∣ L Q ∣ + ∣ R Q ∣ = k cap(S,T)=\sum_{v \in L_{Q}} c(s,v)+ \sum_{v \in R_Q} c(v,t)=|L_Q|+|R_Q|=k cap(S,T)=∑v∈LQc(s,v)+∑v∈RQc(v,t)=∣LQ∣+∣RQ∣=k
因此,流图 G ′ G' G′的最小割=二分图 G G G的最小顶点覆盖的基数。综上,二分图 G G G最大匹配的基数=流图 G ′ G' G′的最大流=流图 G ′ G' G′的最小割=二分图 G G G的最小顶点覆盖的基数。