48、偏序集上子类型可满足性的复杂度分析

偏序集上子类型可满足性的复杂度分析

1. 引言

在众多编程语言中,子类型化是一种常见的特性。在面向对象语言的子类化机制中,子类型化尤为常见。此外,“类型强制转换”的概念也很普遍,例如整数自动转换为浮点数。

自Mitchell的原始研究成果以来,子类型系统的类型检查和类型推断得到了广泛的研究。如今,研究这些系统的主要动机是为了设计更高级的类型化语言以及基于子类型的程序分析算法。

子类型系统通常涉及子类型约束,即形如 $t_1 \leq t_2$ 的不等式,用于表示类型 $t_1$ 是类型 $t_2$ 的子类型。例如,约束 $int \leq real$ 意味着在任何需要浮点数的地方,都可以使用整数。除了类型常量,子类型约束还可能包含类型变量和类型构造函数,如 $int \times x \leq x \times real$ 等价于 $int \leq x \leq real$。

类型变量通常被解释为由类型常量和类型构造函数构建的树。如果允许递归类型,这些树可以是无限的。子类型关系有两种选择:在结构子类型系统中,只有形状相同的类型才相关;在非结构子类型系统中,存在一个“最小”类型 $\bot$ 和一个“最大”类型 $\top$,它们可以与任意形状的类型相关。

文献中研究了子类型约束的三个逻辑问题:可满足性、蕴含性和一阶有效性。如果类型常量构成一个格,那么子类型可满足性问题已经得到很好的理解。然而,对于一般的偏序集(posets),目前只有部分答案。Tiuryn 和 Wand 证明了递归结构可满足性问题在 DEXPTIME 内,Tiuryn 证明了有限结构可满足性问题是 PSPACE 难的,随后 Frey 证明它在 PSPACE 内,因此是 P

源码地址: https://pan.quark.cn/s/d1f41682e390 miyoubiAuto 米游社每日米游币自动化Python脚本(务必使用Python3) 8更新:更换cookie的获取地址 注意:禁止在B站、贴吧、或各大论坛大肆传播! 作者已退游,项目不维护了。 如果有能力的可以pr修复。 小引一波 推荐关注几个非常可爱有趣的女孩! 欢迎B站搜索: @嘉然今天吃什么 @向晚大魔王 @乃琳Queen @贝拉kira 第三方库 食用方法 下载源码 在Global.py中设置米游社Cookie 运行myb.py 本地第一次运行时会自动生产一个文件储存cookie,请勿删除 当前仅支持单个账号! 获取Cookie方法 浏览器无痕模式打开 http://user.mihoyo.com/ ,登录账号 按,打开,找到并点击 按刷新页面,按下图复制 Cookie: How to get mys cookie 当触发时,可尝试按关闭,然后再次刷新页面,最后复制 Cookie。 也可以使用另一种方法: 复制代码 浏览器无痕模式打开 http://user.mihoyo.com/ ,登录账号 按,打开,找到并点击 控制台粘贴代码并运行,获得类似的输出信息 部分即为所需复制的 Cookie,点击确定复制 部署方法--腾讯云函数版(推荐! ) 下载项目源码和压缩包 进入项目文件夹打开命令行执行以下命令 xxxxxxx为通过上面方式或取得米游社cookie 一定要用双引号包裹!! 例如: png 复制返回内容(包括括号) 例如: QQ截图20210505031552.png 登录腾讯云函数官网 选择函数服务-新建-自定义创建 函数名称随意-地区随意-运行环境Python3....
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值