50、偏序集上子类型可满足性复杂度与等价模型检查的类型系统

偏序集上子类型可满足性复杂度与等价模型检查的类型系统

偏序集上有限子类型可满足性

在偏序集上的子类型可满足性研究中,有限结构子类型可满足性已被证明是PSPACE完全问题,这一结论由Tiuryn和Frey得出。现在,我们将为非结构情况建立相同的复杂度结论。

有命题表明,有限树上的非结构子类型可满足性是PSPACE困难的。为了提升这一结果,我们展示了如何将非结构子类型可满足性归约为结构子类型可满足性。

引理指出,结构子类型可满足性在多项式时间内可归约为非结构子类型可满足性(对于有限树和无限树均成立)。证明过程如下:
设Σ是一个结构签名,我们构造一个非结构签名:
(s(Σ) = {df} Σ ∪ {⊥, ⊤, a_1, a_2, a_3, a_4}),其中(a_i)是四个新常量。
此外,(\leq
{s(Σ)} = {df} \leq_Σ ∪ {(a_1, c), (a_2, c), (c, a_3), (c, a_4) | c \in Σ_0})。
设(\phi)是Σ上的一个约束,我们在(s(Σ))上构造(s(\phi))。考虑(\phi)的形状约束(sh(\phi)),如果(sh(\phi))不可合一,我们令(s(\phi) =
{df} ⊤ \leq ⊥)。否则,考虑(sh(\phi))的最一般合一子(\gamma)。我们令(sh(\phi)’)与(sh(\phi))相同,只是每个(\star)的出现都被一个新变量替换。我们制作(sh(\phi)’)的两个副本,(sh(\phi)’_L)和(sh(\phi)’_R)(分别表示左和右),其中每个变量(x)分别区分为(x_L)和(x_R)。对于每个变量

源码地址: https://pan.quark.cn/s/d1f41682e390 miyoubiAuto 米游社每日米游币自动化Python脚本(务必使用Python3) 8更新:更换cookie的获取地址 注意:禁止在B站、贴吧、或各大论坛大肆传播! 作者已退游,项目不维护了。 如果有能力的可以pr修复。 小引一波 推荐关注几个非常可爱有趣的女孩! 欢迎B站搜索: @嘉然今天吃什么 @向晚大魔王 @乃琳Queen @贝拉kira 第三方库 食用方法 下载源码 在Global.py中设置米游社Cookie 运行myb.py 本地第一次运行时会自动生产一个文件储存cookie,请勿删除 当前仅支持单个账号! 获取Cookie方法 浏览器无痕模式打开 http://user.mihoyo.com/ ,登录账号 按,打开,找到并点击 按刷新页面,按下图复制 Cookie: How to get mys cookie 当触发时,可尝试按关闭,然后再次刷新页面,最后复制 Cookie。 也可以使用另一种方法: 复制代码 浏览器无痕模式打开 http://user.mihoyo.com/ ,登录账号 按,打开,找到并点击 控制台粘贴代码并运行,获得类似的输出信息 部分即为所需复制的 Cookie,点击确定复制 部署方法--腾讯云函数版(推荐! ) 下载项目源码和压缩包 进入项目文件夹打开命令行执行以下命令 xxxxxxx为通过上面方式或取得米游社cookie 一定要用双引号包裹!! 例如: png 复制返回内容(包括括号) 例如: QQ截图20210505031552.png 登录腾讯云函数官网 选择函数服务-新建-自定义创建 函数名称随意-地区随意-运行环境Python3....
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值