回溯算法

回溯法其实也是一种搜索算法,它可以方便的搜索解空间。 
回溯法解题通常可以从以下三步入手: 
1、针对问题,定义解空间 
2、确定易于搜索的解空间结构 
3、以深度优先的方式搜索解空间,并在搜索的过程中进行剪枝 
回溯法通常在解空间树上进行搜索,而解空间树通常有子集树和排列树。 
针对这两个问题,算法的框架基本如下: 
用回溯法搜索子集合树的一般框架:

Cpp代码
  1. void backtrack(int t){
  2. if(t > n) output(x);
  3. else{
  4. for(int i = f(n,t); i <= g(n,t);i++){
  5. x[t] = h(i);
  6. if(constraint(t) && bound(t)) backtrack(t+1);
  7. }
  8. }
  9. }
  1. void backtrack(int t){  
  2.   if(t > n) output(x);  
  3.   else{  
  4.     for(int i = f(n,t); i <= g(n,t);i++){  
  5.           x[t] = h(i);  
  6.           if(constraint(t) && bound(t)) backtrack(t+1);  
  7.      }  
  8.   }  
  9. }  


用回溯法搜索排列树的算法框架:

Cpp代码
  1. void backtrack(int t){
  2. if(t > n) output(x);
  3. else{
  4. for(int i = f(n,t); i <= g(n,t);i++){
  5. swap(x[t],x[i]);
  6. if(constraint(t) && bound(t)) backtrack(t+1);
  7. swap(x[t],x[i]);
  8. }
  9. }
  10. }
  1. void backtrack(int t){  
  2.   if(t > n) output(x);  
  3.   else{  
  4.     for(int i = f(n,t); i <= g(n,t);i++){  
  5.           swap(x[t],x[i]);  
  6.           if(constraint(t) && bound(t)) backtrack(t+1);  
  7.           swap(x[t],x[i]);   
  8.     }  
  9.   }  
  10. }  


其中f(n,t),g(n,t)表示当前扩展结点处未搜索过的子树的起始标号和终止标号, 
h(i)表示当前扩展节点处,x[t]第i个可选值。constraint(t)和bound(t)是当前 
扩展结点处的约束函数和限界函数。constraint(t)返回true时,在当前扩展结点 
x[1:t]取值满足约束条件,否则不满足约束条件,可减去相应的子树。bound(t)返 
回的值为true时,在当前扩展结点x[1:x]处取值未使目标函数越界,还需要由backtrack(t+1) 
对其相应的子树进一步搜索。 
用回溯法其实质上是提供了搜索解空间的方法,当我们能够搜遍解空间时, 
显然我们就能够找到最优的或者满足条件的解。这便是可行性的问题, 而效率可以 
通过剪枝函数来降低。但事实上一旦解空间的结构确定了,很大程度上时间复杂度 
也就确定了,所以选择易于搜索的解空间很重要。 
下面我们看看两个最简单的回溯问题,他们也代表了两种搜索类型的问题:子集合问题和 
排列问题。 
第一个问题: 
求集合s的所有子集(不包括空集),我们可以按照第一个框架来写代码:

Cpp代码
  1. #include<iostream>
  2. using namespace std;
  3. int s[3] = {1,3,6};
  4. int x[3];
  5. int N = 3;
  6. void print(){
  7. for(int j = 0; j < N; j++)
  8. if(x[j] == 1)
  9. cout << s[j] << " ";
  10. cout << endl;
  11. }
  12. void subset(int i){
  13. if(i >= N){
  14. print();
  15. return;
  16. }
  17. x[i] = 1;//搜索右子树
  18. subset(i+1);
  19. x[i] = 0;//搜索左子树
  20. subset(i+1);
  21. }
  22. int main(){
  23. subset(0);
  24. return 0;
  25. }
  1. #include<iostream>  
  2. using namespace std;  
  3.   
  4. int s[3] = {1,3,6};  
  5. int x[3];  
  6. int  N = 3;  
  7. void print(){  
  8.    for(int j = 0; j < N; j++)  
  9.     if(x[j] == 1)  
  10.        cout << s[j] << " ";  
  11.    cout << endl;  
  12. }  
  13.   
  14. void subset(int i){  
  15.     if(i >= N){  
  16.         print();  
  17.         return;  
  18.     }  
  19.   
  20.     x[i] = 1;//搜索右子树  
  21.     subset(i+1);  
  22.     x[i] = 0;//搜索左子树  
  23.     subset(i+1);  
  24. }  
  25.   
  26. int main(){  
  27.   subset(0);  
  28.   return 0;  
  29. }  



下面我们看第二个问题:排列的问题,求一个集合元素的全排列。 
我们可以按照第二个框架写出代码:

Cpp代码
  1. #include<iostream>
  2. using namespace std;
  3. int a[4] = {1,2,3,4};
  4. const int N = 4;
  5. void print(){
  6. for(int i = 0; i < N; i++)
  7. cout << a[i] << " ";
  8. cout << endl;
  9. }
  10. void swap(int *a,int i,int j){
  11. int temp;
  12. temp = a[i];
  13. a[i] = a[j];
  14. a[j] = temp;
  15. }
  16. void backtrack(int i){
  17. if(i >= N){
  18. print();
  19. }
  20. for(int j = i; j < N; j++){
  21. swap(a,i,j);
  22. backtrack(i+1);
  23. swap(a,i,j);
  24. }
  25. }
  26. int main(){
  27. backtrack(0);
  28. return 0;
  29. }
  1. #include<iostream>  
  2. using namespace std;  
  3.   
  4. int a[4] = {1,2,3,4};  
  5. const int N = 4;  
  6.   
  7. void print(){  
  8.     for(int i = 0; i < N; i++)  
  9.            cout << a[i] << " ";  
  10.     cout << endl;  
  11. }  
  12.   
  13. void swap(int *a,int i,int j){  
  14.   int temp;  
  15.   temp = a[i];  
  16.   a[i] = a[j];  
  17.   a[j] = temp;  
  18. }  
  19.   
  20. void backtrack(int i){  
  21.     if(i >= N){  
  22.         print();  
  23.     }  
  24.     for(int j = i; j < N; j++){  
  25.         swap(a,i,j);  
  26.         backtrack(i+1);  
  27.         swap(a,i,j);  
  28.     }  
  29. }  
  30.   
  31. int main(){  
  32.   backtrack(0);  
  33.   return 0;  
  34. }  


这两个问题很有代表性,事实上有许多问题都是从这两个问题演变而来的。第一个问题,它穷举了所有问题的子集,这是所有第一种类型的基础,第二个问题,它给出了穷举所有排列的方法,这是所有的第二种类型的问题的基础。理解这两个问题,是回溯算法的基础. 
下面看看一个较简单的问题: 
整数集合s和一个整数sum,求集合s的所有子集su,使得su的元素之和为sum。 
这个问题很显然是个子集合问题,我们很容易就可以把第一段代码修改成这个问题的代码:

Cpp代码
  1. int sum = 10;
  2. int r = 0;
  3. int s[5] = {1,3,6,4,2};
  4. int x[5];
  5. int N = 5;
  6. void print(){
  7. for(int j = 0; j < N; j++)
  8. if(x[j] == 1)
  9. cout << s[j] << " ";
  10. cout << endl;
  11. }
  12. void sumSet(int i){
  13. if(i >= N){
  14. if(sum == r) print();
  15. return;
  16. }
  17. if(r < sum){//搜索右子树
  18. r += s[i];
  19. x[i] = 1;
  20. sumSet(i+1);
  21. r -= s[i];
  22. }
  23. x[i] = 0;//搜索左子树
  24. sumSet(i+1);
  25. }
  26. int main(){
  27. sumSet(0);
  28. return 0;
  29. }
  1. int sum = 10;  
  2. int r = 0;  
  3. int s[5] = {1,3,6,4,2};  
  4. int x[5];  
  5. int  N = 5;  
  6.   
  7. void print(){  
  8.    for(int j = 0; j < N; j++)  
  9.     if(x[j] == 1)  
  10.        cout << s[j] << " ";  
  11.    cout << endl;  
  12. }  
  13. void sumSet(int i){  
  14.     if(i >= N){  
  15.         if(sum == r) print();  
  16.         return;  
  17.     }  
  18.     if(r < sum){//搜索右子树  
  19.       r += s[i];  
  20.       x[i] = 1;  
  21.       sumSet(i+1);  
  22.       r -= s[i];   
  23.     }  
  24.     x[i] = 0;//搜索左子树  
  25.     sumSet(i+1);  
  26. }  
  27.   
  28. int main(){  
  29.   sumSet(0);  
  30.   return 0;  
  31. }  

回溯法之二---8皇后问题

八皇后问题是一个古老而著名的问题,是回溯算法的典型例题。该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上. 
问题分析: 
第一步 定义问题的解空间 
这个问题解空间就是8个皇后在棋盘中的位置. 
第二步 定义解空间的结构 
可以使用8*8的数组,但由于任意两个皇后都不能在同行,我们可以用数组下标表示 
行,数组的值来表示皇后放的列,故可以简化为一个以维数组x[9]。 
第三步 以深度优先的方式搜索解空间,并在搜索过程使用剪枝函数来剪枝 
根据条件:x[i] == x[k]判断处于同一列 
abs(k-i) == abs(x[k]-x[i]判断是否处于同一斜线 
我们很容易写出剪枝函数: 
Cpp代码
  1. bool canPlace(int k){
  2. for(int i = 1; i < k; i++){
  3. //判断处于同一列或同一斜线
  4. if(x[i] == x[k] || abs(k-i) == abs(x[k]-x[i])) return false;
  5. }
  6. return true;
  7. }
  1. bool canPlace(int k){  
  2.     for(int i = 1; i < k; i++){  
  3.         //判断处于同一列或同一斜线  
  4.        if(x[i] == x[k] || abs(k-i) == abs(x[k]-x[i]))              return false;  
  5.     }  
  6.     return true;  
  7. }  

然后我们按照回溯框架一,很容易写出8皇后的回溯代码: 
Cpp代码
  1. void queen(int i){
  2. if(i > 8){
  3. print();
  4. return;
  5. }
  6. for(int j = 1; j <= 8; j++){
  7. x[i] = j;//记录所放的列
  8. if(canPlace(i)) queen(i+1);
  9. }
  10. }
  1. void queen(int i){  
  2.     if(i > 8){  
  3.         print();  
  4.         return;  
  5.     }  
  6.     for(int j = 1; j <= 8; j++){  
  7.       x[i] = j;//记录所放的列  
  8.       if(canPlace(i)) queen(i+1);  
  9.     }  
  10. }  

整个代码: 
Cpp代码
  1. #include<iostream>
  2. #include<cmath>
  3. using namespace std;
  4. int x[9];
  5. void print(){
  6. for(int i = 1; i <= 8; i++)
  7. cout << x[i] << " ";
  8. cout << endl;
  9. }
  10. bool canPlace(int k){
  11. for(int i = 1; i < k; i++){
  12. //判断处于同一列或同一斜线
  13. if(x[i] == x[k] || abs(k-i) == abs(x[k]-x[i]))
  14. return false;
  15. }
  16. return true;
  17. }
  18. void queen(int i){
  19. if(i > 8){
  20. print();
  21. return;
  22. }
  23. for(int j = 1; j <= 8; j++){
  24. x[i] = j;
  25. if(canPlace(i)) queen(i+1);
  26. }
  27. }
  28. int main(){
  29. queen(1);
  30. return 0;


八皇后问题的非递归实现
这里给出的递归实现和上面的差不多,放在这里主要是为了和下面的非递归作对应,因为它们的变量相似。
递归实现:
#include "stdio.h"
#include 
"stdlib.h"
#include 
"time.h"

/**//* 记录当前的放置方案 */
int *x; 
/**//* 皇后的个数N 和 方案数目 */
int n,sum=0;
/**//* 检查参数所指示的这一行皇后放置方案是否满足要求 */
int Place(int);
/**//* 递归方法求取皇后放置方案*/
void Queen1(void);
/**//* 用户递归求取皇后放置方案的递归方法 */
void TraceBack(int);
/**//* 打印当前成功的放置方案 */
void PrintMethod(void);

void main(void)
{
 
long start,stop;
 printf(
"input n: ");
 scanf(
"%d",&n);
 x
=(int *)malloc(sizeof(int)*n);
 time(
&start);/**//*记录开始时间*/
 Queen1();
 time(
&stop);/**//*记录结束时间*/
 printf(
"\nmethod total %d \n",sum);
 printf(
"\nuse %d seconds \n",(int)(stop-start));
}


int Place(int r)
{
 
int i;
 
for(i=0;i<r;i++){
 
if(x[r]==x[i] || abs(r-i)==abs(x[r]-x[i]))
 
return 0;
 }

 
return 1;
}


void TraceBack(int r)
{
 
int i;
 
if(r>=n){
 sum
++;
 
/**//* PrintMethod(); */
 }
else{
 
for(i=0;i<n;i++){
 x[r]
=i;
 
if(Place(r)) TraceBack(r+1);
 }

 }

}


void PrintMethod(void)
{
 
int i,j;
 printf(
"\nmethod %d\n",sum);
 
for(i=0;i<n;i++){
 
for(j=0;j<n;j++){
 
if(j==x[i]) printf("*");
 
else printf("#");
 }

 printf(
"\n");
 }

}


void Queen1(void)
{
 TraceBack(
0);
}

非递归实现:

#include "stdio.h"
#include 
"stdlib.h"
#include 
"time.h"

/**//* 记录当前的放置方案 */
int *x; 
/**//* 皇后的个数N 和 方案数目 */
int n,sum=0;
/**//* 检查参数所指示的这一行皇后放置方案是否满足要求 */
int Place(int);
/**//* 非递归的方法求取皇后放置方案 */
void Queen2(void);
/**//* 打印当前成功的放置方案 */
void PrintMethod(void);

void main(void)
{
 
long start,stop;
 printf(
"input n: ");
 scanf(
"%d",&n);
 x
=(int *)malloc(sizeof(int)*n);
 time(
&start);/**//*记录开始时间*/
 Queen2();
 time(
&stop);/**//*记录结束时间*/
 printf(
"\nmethod total %d \n",sum);
 printf(
"\nuse %d seconds \n",(int)(stop-start));
}


int Place(int r)
{
 
int i;
 
for(i=0;i<r;i++){
 
if(x[r]==x[i] || abs(r-i)==abs(x[r]-x[i]))
 
return 0;
 }

 
return 1;
}


void Queen2(void)
{
 
int i,k;
 
for(i=0;i<n;i++)
 x[i]
=0;
 k
=0;
 
while(1){
 
if(x[k]>=n){
 
/**//* 如果当前第K行的放置位置超出了范围,那么检查该行是否为第0行
 如果是第0行,说明所有的方案都已经遍历完毕,函数返回;否则回退到前一行
 
*/

 
if(k==0break;
 x[k]
=0/**//* 下次遍历的初始位置 */
 k
--/**//* 返回上一行 */
 x[k]
++/**//*下一种放置方案*/
 }

 
else if(!Place(k)){
 
/**//* 如果当前第K行的放置方案不满足要求,采取下一种放置方案*/
 x[k]
++;
 }

 
else{
 
if(k==(n-1)){
 
/**//* 如果已经是最后一行,那么表示已经成功得到一种放置方案*/
 sum
++;
 
/**//* PrintMethod(); */
 x[k]
=0/**//*下次遍历的初始位置*/
 k
--/**//*返回上一行*/
 x[k]
++/**//*下一种放置方案*/
 }
else
 k
++/**//* 否则开始配置下一行的皇后 */
 }

 }

}


void PrintMethod(void)
{
 
int i,j;
 printf(
"\nmethod %d\n",sum);
 
for(i=0;i<n;i++){
 
for(j=0;j<n;j++){
 
if(j==x[i]) printf("*");
 
else printf("#");
 }

 printf(
"\n");
 }

}

  1. #include<iostream>  
  2. #include<cmath>  
  3. using namespace std;  
  4.   
  5. int x[9];  
  6. void print(){  
  7.     for(int i = 1; i <= 8; i++)  
  8.            cout << x[i] << " ";  
  9.     cout << endl;  
  10. }  
  11.   
  12. bool canPlace(int k){  
  13.     for(int i = 1; i < k; i++){  
  14.             //判断处于同一列或同一斜线  
  15.        if(x[i] == x[k] || abs(k-i) == abs(x[k]-x[i]))   
  16.            return false;  
  17.     }  
  18.     return true;  
  19. }  
  20.   
  21. void queen(int i){  
  22.     if(i > 8){  
  23.         print();  
  24.         return;  
  25.     }  
  26.     for(int j = 1; j <= 8; j++){  
  27.       x[i] = j;  
  28.       if(canPlace(i)) queen(i+1);  
  29.     }  
  30. }  
  31.   
  32. int main(){  
  33.   queen(1);  
  34.   return 0;  
  35. }  
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值