第三章 k近邻法

基本梳理

  • 思维导图
    img

  • k近邻算法

    • 原理

      img

    • 特点

      • 优点
        • 精度高
        • 对异常值不敏感
        • 无数据输入假定
      • 缺点
        • 计算复杂度高
        • 空间复杂度高
      • 适用数据范围
        • 数值型和标称型
    • 工作原理

      • 训练样本集,知道样本集中每个数据与所属分类的对应的关系
      • 输入没有标签的新数据后,讲新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签
      • 一般来说,只选择样本数据集中前N个最相似的数据.K一般不大于20,最后,选择k个中出现次数最多的分类,作为新数据的分类
    • 一般流程

      • 收集数据
      • 准备数据
      • 分析数据
      • 训练算法(此步骤knn)中不适用
      • 测试算法
      • 使用算法
  • k近邻模型

    • 模型

      img

    • 距离度量

      • L-p距离

        • L p ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ p ) 1 p L _ { p } \left( x _ { i } , x _ { j } \right) = \left( \sum _ { l = 1 } ^ { n } \left| x _ { i } ^ { ( l ) } - x _ { j } ^ { ( l ) } \right| ^ { p } \right) ^ { \frac { 1 } { p } } Lp(xi,xj)=(l=1nxi(l)xj(l)p)p1
      • 欧式距离

        • L 2 ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ 2 ) 1 2 L _ { 2 } \left( x _ { i } , x _ { j } \right) = \left( \sum _ { l = 1 } ^ { n } \left| x _ { i } ^ { ( l ) } - x _ { j } ^ { ( l ) } \right| ^ { 2 } \right) ^ { \frac { 1 } { 2 } } L2(xi,xj)=(l=1nxi(l)xj(l)2)21
      • 曼哈顿距离

        • L 1 ( x i , x j ) = ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ L _ { 1 } \left( x _ { i } , x _ { j } \right) = \sum _ { l = 1 } ^ { n } \left| x _ { i } ^ { ( l ) } - x _ { j } ^ { ( l ) } \right| L1(xi,xj)=l=1nxi(l)xj(l)
      • L∞距离

        • L ∞ ( x i , x j ) = max ⁡ l ∣ x i ( l ) − x j ( l ) ∣ L _ { \infty } \left( x _ { i } , x _ { j } \right) = \max _ { l } \left| x _ { i } ^ { ( l ) } - x _ { j } ^ { ( l ) } \right| L(xi,xj)=maxlxi(l)xj(l)

      img

    • k值的选择

      • k偏小
        • 近似误差会减小,估计误差会增大
        • 噪声敏感
        • 整体模型变得复杂,容易过拟合
      • k偏大
        • 估计误差减少,近似误差增大
        • 模型简单
    • 分类决策规则

      • 多数表决准则
  • k近邻法的实现:kd树

    • 加快速度

代码小练习

距离度量

  • p = 1 曼哈顿距离
  • p = 2 欧氏距离
  • p = inf 闵式距离minkowski_distance
import math
# x, y 默认欧式距离
def L(x, y, p = 2):
    if len(x) == len(y) and len(x) > 1:
        sum = 0
        for i in range(len(x)):
            sum += math.pow(abs(x[i] - y[i]), p )
        return math.pow(sum,1/p)
    else:
        return 0

k近邻法(少数服从多数)

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

from collections import Counter
载入数据
# data
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['label'] = iris.target
df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
# data = np.array(df.iloc[:100, [0, 1, -1]])
plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()
<matplotlib.legend.Legend at 0x1eb97c2c4a8>

在这里插入图片描述

data = np.array(df.iloc[:100, [0, 1, -1]])
X, y = data[:,:-1], data[:,-1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
构造模型
class KNN:
    def __init__(self, X_train, y_train, n_neighbors = 3, p = 2):
        self.n = n_neighbors
        self.p = p
        self.X_train = X_train
        self.y_train = y_train
    
    def predict(self,X):
        knn_list = []
        for i in range(self.n):
            dist = np.linalg.norm(X-self.X_train[i],ord=self.p)
            knn_list.append((dist,self.y_train[i]))
        for i in range(self.n,len(self.X_train)):
            max_index = knn_list.index(max(knn_list,key=lambda x : x[0]))
            dist = np.linalg.norm(X-self.X_train[i],ord=self.p)
            if knn_list[max_index][0] > dist:
                knn_list[max_index] = (dist,self.y_train[i])
        knn = [k[-1] for k in knn_list]
        count_pairs = Counter(knn)
        return count_pairs.most_common(1)[0][0]
    
    def score(self, X_test, y_test):
        right_count = 0
        n = 10
        for X, y in zip(X_test, y_test):
            label = self.predict(X)
            if label == y:
                right_count += 1
        return right_count / len(X_test)
clf = KNN(X_train, y_train)
clf.score(X_test, y_test)
1.0
test_point = [6.0, 3.0]
print('Test Point: {}'.format(clf.predict(test_point)))
Test Point: 1.0
plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
plt.plot(test_point[0], test_point[1], 'bo', label='test_point')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()
<matplotlib.legend.Legend at 0x1eb9a0b7128>

在这里插入图片描述

scikit - learn

sklearn.neighbors.KNeighborsClassifier

  • n_neighbors: 临近点个数
  • p: 距离度量
  • algorithm: 近邻算法,可选{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}
  • weights: 确定近邻的权重
from sklearn.neighbors import KNeighborsClassifier
clf_sk = KNeighborsClassifier()
clf_sk.fit(X_train, y_train)
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           metric_params=None, n_jobs=1, n_neighbors=5, p=2,
           weights='uniform')
clf_sk.score(X_test, y_test)
1.0
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值