湫一

Share the world!

pytorch 学习 | 全局平均池化 global average pooling 实现 和作用优点解析

pytorch 实现 在一些论文中,我们可能会看到全局平均池化操作,但是我们从pytorch官方文档中却找不到这个API,那我们应该怎么办? 答案是: 利用现有的pooling API实现全局平均池化的效果。 首先我们简单理解全局平均池化操作。 如果有一批特征图,其尺寸为 [ B, C, H, W...

2019-05-24 01:09:25

阅读数 15

评论数 0

深度学习 | 优质的深度学习资源(DL、ML、CV、paper、blog、比赛....)

优质课程 CS231n :http://cs231n.github.io/ 【英文】 斯坦福大学李飞飞教授主讲,几乎是CV入门必看。 网易云吴恩达coursera机器学习课程:https://study.163.com/course/introduction/1004570029.htm...

2019-05-23 20:17:25

阅读数 19

评论数 0

深度学习 | 深入解析CNN pooling 池化层原理及其作用

笔者最近碰到了几种池化层,如最常见的max pooling,后来又遇到了全局平均池化,自适应池化等操作,感叹有点疑惑,这些不同的pooling之间的作用是什么啊? 翻了一下pytorch的官方文档,发现竟然还有很多没见过的pooling操作。有点震惊。 于是,笔者决定花费一点时间来了解认识这些不...

2019-05-23 15:40:49

阅读数 20

评论数 0

10 个 python可视化实例 | 基于matplotlib & seaborn

title: 10 个 python可视化实例 | matplotlib & seaborn date: 2019-02-17 17:08:32 tags: python 数据可视化 本文主要介绍了 10 种常用且易于上手的可视化方法,基于python3.7实现。主要...

2019-05-23 01:27:37

阅读数 25

评论数 0

pytorc实战 | Helen人脸解析数据集加载使用

最近在做人脸相关的任务,涉及到了这个 Helen人脸解析数据集,发现在网上关于该数据集的介绍很少,并且难以找到直接可用的数据加载方式,在这里记录以下,希望能帮助到大家。 Helen数据集下载 Helen数据集原本是用于人脸特征点任务的数据集,不过在13年的CVPR一篇论文将它应用于人脸解析分割任务...

2019-05-21 19:37:44

阅读数 26

评论数 0

pytorch 学习 | 使用pytorch动手实现LSTM模块

LSTM 简介 LSTM是RNN中一个较为流行的网络模块。主要包括输入,输入门,输出门,遗忘门,激活函数,全连接层(Cell)和输出。其结构如下: 上述公式不做解释,我们只要大概记得以下几个点就可以了: 当前时刻LSTM模块的输入有来自当前时刻的输入值,上一时刻的输出值,输入值和隐含层输出值...

2019-05-17 21:15:31

阅读数 78

评论数 0

pytorch学习笔记 | Focal loss的原理与pytorch实现

Focal 原理简述 Focal loss是一个针对单阶段物体检测正负样本不均衡而提出来的损失函数,论文地址来自arxiv 先放focal loss(FL)和cross entropy(CE)两个函数的数学定义。 可以看到focal loss的设计很简单明了,就是在标准交叉熵损失函数的 foca...

2019-05-17 20:19:43

阅读数 60

评论数 0

pytorch 速记 | squeeze,unsqueeze, cat,stack, view 常见用法

在实际使用中老是忘记这些和维度相关操作的API用法,在这里记录一下,作为备忘。 unsqueeze unsqueeze指定某一个维度(如0),然后在该维度再插入一个维度,一般用来增加维度,尺寸只能为1。 从以下代码可以看出,经过unsuqeeze之后,tensor的尺寸在0的位置多了一个1。 In...

2019-05-13 22:23:34

阅读数 15

评论数 0

wget方式下载MS COCO数据集(速度快!)

最近正在做实例分割的项目,需要下载MS 2017 的COCO数据集,但是呢,直接从官网上下载,速度较慢(需要fq),用迅雷更是完全不行滴。翻遍整个CSDN(误),都没有找到合适的下载源。最后在github上找到以下的方法来下载标签文件,图片文件,特此分享给大家。 在linux 终端中,新建下载脚本...

2019-05-11 19:29:26

阅读数 16

评论数 0

pytorch 实战 | 动手设计CNN+MNIST手写体数字识别

文章目录前言引入库函数预设超参数加载数据集设计CNN训练前准备训练模块预测模块运行结果总结 前言 相信对于每一个刚刚上手深度学习的孩子来说,利用mnist数据集来训练一个CNN是再好不过的学习demo了。 本文使用 pytorch 来动手搭建一个卷积神经网络来训练和预测手写数字。通过本文,你将了解...

2019-03-15 13:10:28

阅读数 115

评论数 0

pytorch 入门笔记 | 谈谈pytorch的框架特色

pytorch 可以说是深度学习入门首选的框架,语法特点特别接近numpy,上手简单。作为一门流行的框架,总有它流行的原因,笔者认为这是pytorch框架的一些特色所决定的,以下内容来源笔者在入门学习中的体会,因此作文总结。 近期我简单入门了一下深度学习,对 pytorch 有了一定的掌握和认...

2019-03-04 00:40:52

阅读数 66

评论数 0

LaTex 常用数学公式符号速记

公式 LaTex的行内公式和行间公式区别如下: \usepackage{amsmath} % 此处引入数学公式的包 % 行内公式 This is an inline formula. $a = \sqrt{b + c}$. % 行间公式, 带编号 \begin{equation} E = m...

2019-01-21 22:54:12

阅读数 94

评论数 0

美赛论文Latex简易模板 | 快速上手(附注释)

最近又是一年一度的美赛备战期(2019),想必会有许多萌新(包括我)正在积极地备战中。其中重要的一环想必就是上手Latex,照着往年O奖论文打出一份框架模板,掌握经常用到的Latex语法。了解基础用法之后,再按照实际需要进行扩展,这样学习成本就会比较小,有更多的时间去琢磨写作,模型方面。本博文仅...

2019-01-19 19:50:35

阅读数 228

评论数 0

使用OpenCV3.4的SVM实现mnist手写体的训练和预测

最近在用C++做手写体识别,踩了许多坑。。网上使用SVM的教程遇到的都比较坑,看了半天没怎么涉及原理,而代码又比较乱,没怎么介绍,害我搞了一下午,所以就很烦,所幸最后终于找到了方法,所以想把这段比较痛苦的经历记录下来,造福后人。如果是想从本文弄懂原理的话,那比较抱歉。 说明  实验环境是:...

2019-01-04 17:17:08

阅读数 232

评论数 0

基于Solc和Web3.js实现Solidity0.5.0智能合约的编译和部署

对于刚入门以太坊的朋友来说,最简单的智能合约编译部署就是使用Remix部署了。如果有想尝试自己写代码体会编译部署过程的朋友,请看以下内容。希望对你有所帮助。 而且由于solidity 0.4 和 0.5 版本之间的存在较大的变化,编译方式产生了较大的差异,网上许多教程都是基于0.4的,在0.5版...

2019-01-01 01:17:58

阅读数 2221

评论数 8

SVM支持向量机原理及python实现

文章目录@[toc]基本概念函数间隔kernelsoft margin & slack variableSequential Minimal Optimizationpython 实现 基本概念 最简单的支持向量机是一个二分类的分类器。分类思想是给定一组包含...

2018-12-24 22:58:28

阅读数 72

评论数 0

K近邻算法原理及python简单实现

基本概念 k 近邻算法是一种经典且简单的机器学习算法之一,用于分类和回归。在本文只探讨分类问题中的 k 近邻法。 k 近邻算法是一种少数服从多数的思想。给定一个训练数据集,数据集中的每一条数据都由一个特征向量表出如(x_1, x_2…),每一条数据对应一个类别即标签。 我们输入一个新数据的向量到...

2018-12-24 22:55:22

阅读数 51

评论数 0

IPSec下隧道模式和传输模式的装包与拆包

文章目录隧道模式下的ESP协议运作过程装包过程拆包过程传输模式下的ESP协议运作过程-装包和拆包装包过程拆包过程 隧道模式下的ESP协议运作过程 装包过程 对原始IP报文的处理: 添加ESP尾部 Padding:加密算法是块加密的话,就需要填充 Pad length:补上填充长度 Next...

2018-12-21 13:04:32

阅读数 187

评论数 0

简单 | mnist 数据集转为csv格式读取

前言 对于刚入门AI的童鞋来说,mnist 数据集就相当于刚接触编程时的 “ hello world ” 一样,具有别样的意义,后续许多机器学习的算法都可以用该数据集来进行简单测试。 mnist数据来源:戳这里。 从官网上下载下来的数据是以下格式的,我想大多数人都不太熟悉。 网站也给出...

2018-12-20 17:04:48

阅读数 460

评论数 1

Adaboost 原理介绍和python代码实现

Adaboost 原理 Adaboost 全称为 adaptive boost, 意为自适应的提升方法,作用是能够通过分布不同权重的方式将多个弱分类器提升为一个强分类器,不同的弱分类器解决不同的分类问题,多个弱分类器通过加权组合得到一个强分类器。详细公式过程如下: 给定 N 个样本的特征向量 ...

2018-12-20 10:29:27

阅读数 72

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭