使用Http方式访问ClickHouse demo

本文通过一个详细的示例,展示了如何在Java环境中利用Http方式连接并查询ClickHouse数据库。从引入Maven依赖开始,逐步讲解配置类CkConfig、客户端CkClient的创建,直至在Demo和CkConnectTest中实现具体查询操作,获取过去24小时内每小时的数据。
摘要由CSDN通过智能技术生成

目录

1、引入maven依赖

2、CkConfig.java

3、CkClient.java 

4、Demo.java

5、CkConnectTest.java


 

1、引入maven依赖

	<!-- OKHttp3依赖 -->
        <dependency>
            <groupId>com.squareup.okhttp3</groupId>
            <artifactId>okhttp</artifactId>
            <version>3.8.1</version>
        </dependency>

2、CkConfig.java

import lombok.Data;
import org.springframework.stereotype.Component;

/**
 * Created By ZhuKeqian on 2020/8/11
 */

@Component
@Data
public class CkConfig {
	// 在这里我写成固定值
    private String url = "http://******";
    private String cluster = "your_cluster_name";
    private String database = "default";
    private String user = "user_name";
    private String password = "ck_password";

}

3、CkClient.java 

import com.alibaba.fastjson.JSONObject;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.TimeUnit;
import lombok.extern.slf4j.Slf4j;
import okhttp3.MediaType;
import okhttp3.OkHttpClient;
import okhttp3.Request;
import okhttp3.RequestBody;
import okhttp3.Response;
import org.apache.commons.lang3.StringUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

/**
 * Created By ZhuKeqian on 2020/8/11
 */

@Slf4j
@Component
public class CkClient {

    @Autowired
    CkConfig ckConfig;

    private static OkHttpClient client = null;


    public static OkHttpClient getClient() {
        if (client == null) {
            client = new OkHttpClient.Builder()
                    .readTimeout(60, TimeUnit.SECONDS)
                    .connectTimeout(1, TimeUnit.SECONDS).build();
        }
        return client;
    }

    private stati
您好!下面是一个简单的示例,演示如何使用 Apache Flink 将数据写入 ClickHouse 数据库。 首先,您需要确保已经安装了 Apache Flink 和 ClickHouse,并且已经设置好了它们的环境。 接下来,您需要在 Flink 作业中引入 ClickHouse 的依赖。在 pom.xml 文件中添加以下依赖项: ```xml <dependencies> <!-- Flink dependencies --> ... <!-- ClickHouse dependency --> <dependency> <groupId>ru.yandex.clickhouse</groupId> <artifactId>clickhouse-jdbc</artifactId> <version>0.3.1</version> </dependency> </dependencies> ``` 然后,您可以编写一个 Flink 作业,将数据写入 ClickHouse。以下是一个简单的示例: ```java import org.apache.flink.api.common.functions.MapFunction; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.connectors.clickhouse.ClickHouseSink; import org.apache.flink.streaming.connectors.clickhouse.ClickHouseSinkFunction; import org.apache.flink.streaming.connectors.clickhouse.ClickHouseSinkRequestBuilder; import org.apache.flink.streaming.connectors.clickhouse.common.ClickHouseTableInfo; import org.apache.flink.streaming.connectors.clickhouse.common.ClickHouseTypeInfo; public class FlinkClickHouseDemo { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 设置并行度 env.setParallelism(1); // 创建数据流 DataStream<String> dataStream = env.fromElements("data1", "data2", "data3"); // 将数据流转换为 ClickHouseSinkFunction ClickHouseSinkFunction<String> clickHouseSinkFunction = new ClickHouseSinkFunction<String>() { @Override public ClickHouseSinkRequestBuilder getClickHouseRequestBuilder(String element) { ClickHouseTableInfo tableInfo = new ClickHouseTableInfo("your_table", new String[]{"column1"}, new ClickHouseTypeInfo[]{ClickHouseTypeInfo.StringTypeInfo}); return new ClickHouseSinkRequestBuilder(tableInfo).setData(element); } }; // 创建 ClickHouseSink ClickHouseSink<String> clickHouseSink = new ClickHouseSink<>("jdbc:clickhouse://your_clickhouse_server:8123/default", clickHouseSinkFunction); // 将数据写入 ClickHouse dataStream.addSink(clickHouseSink); // 执行作业 env.execute("Flink ClickHouse Demo"); } } ``` 请确保将 "your_table"、"column1"、"your_clickhouse_server" 替换为实际的表名、列名和 ClickHouse 服务器地址。 这只是一个简单的示例,您可以根据实际需求进行更复杂的数据处理和写入操作。 希望这个示例对您有所帮助!如有任何问题,请随时提问。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值