PNet是全卷积网络,主要为了应对不同输入尺度,最后输出的为W×H×2,W×H×4两个特征图,其中W×H×4为候选框的在特征图中的位置坐标,需要将它们映射到原始图像中,接下来对这个映射关系进行解析。
一、什么是感受野
卷积神经网络CNN中,某一层输出结果中一个元素所对应的输入层的区域大小,被称作感受野receptive field。感受野的大小是由kernel size,stride,padding , outputsize 一起决定的。
卷积过程中的词语含义:
•28×28的输入图片(输入图片尺寸W=28)
•5×5的卷积核(卷积核大小K=5)
•滑动步长(stride=1)
当padding=‘valid’(不进行填充)
根据隐藏层边长=(W-K)/S +1,可以得到2424的隐层神经元。
当padding=‘SAME’(进行填充)
根据隐藏层边长=(W-K+2P)/S +1,其中P=(K-1)/2,可以得到2828的隐层神经元,可以保证输入层与输出层有相同的空间分布 。
综上所述:隐藏层边长(输出的边长)= ÿ