MTCNN中P_Net特征映射关系解析

本文详细解析了MTCNN中的P_Net网络结构,特别是其输出的W×H×2,W×H×4特征图如何映射到原始图像。介绍了感受野的概念,解释了在卷积过程中不同参数如kernel size、stride和padding如何影响输出大小。此外,还阐述了如何计算不同特征图之间的坐标映射关系,提供了一种简单的解决方案来确定每个特征图上点的感受野中心。
摘要由CSDN通过智能技术生成

PNet是全卷积网络,主要为了应对不同输入尺度,最后输出的为W×H×2,W×H×4两个特征图,其中W×H×4为候选框的在特征图中的位置坐标,需要将它们映射到原始图像中,接下来对这个映射关系进行解析。

一、什么是感受野
卷积神经网络CNN中,某一层输出结果中一个元素所对应的输入层的区域大小,被称作感受野receptive field。感受野的大小是由kernel size,stride,padding , outputsize 一起决定的。
在这里插入图片描述
卷积过程中的词语含义:
•28×28的输入图片(输入图片尺寸W=28)
•5×5的卷积核(卷积核大小K=5)
•滑动步长(stride=1)
当padding=‘valid’(不进行填充)
根据隐藏层边长=(W-K)/S +1,可以得到2424的隐层神经元。
当padding=‘SAME’(进行填充)
根据隐藏层边长=(W-K+2P)/S +1,其中P=(K-1)/2,可以得到28
28的隐层神经元,可以保证输入层与输出层有相同的空间分布 。

综上所述:隐藏层边长(输出的边长)= ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值