【冷知识】√2、e和π谁更无理?

原创 微信公众号 小数点同学会 2024年09月10日 13:43 北京

你知道吗?

√2、e和π都是无理数,可谁更无理一点呢?

“无理”是个什么标准?如果我们把“无理”的标准定为更难以用有规律的形式表达出来,那么这三个无理数就可以一决胜负了。

第一轮我们比较它们的小数形式。√2、e和π都是无限不循环小数,而且小数点后的数字都没什么规律,无理程度难分伯仲。看来这一轮打个平手。

第二轮,三个无理数必须换成用连分数的形式来表达。根据连分数的复杂程度,我们也许可以评判出这三个无理数到底谁更无理。可它们的连分数形式分别是什么呢?

什么是连分数

等等,好像忘了先介绍一下什么是连分数了!

把一个数写成小数形式是个常规操作,大家应该非常熟悉了。比如:

27⁄8 = 3.375  

√2 = 1.414213562373...  

e = 2.718281828459045...  

π = 3.141592653589793...

其实,表示一个数的方法还有很多。其中一种常用方式就是我们刚刚说的“连分数”(continued fraction)。用连分数的形式来表示一个数,大致的方法就是:把它的整数部分拆出来写在前面,剩余部分写成一个分子为1的分数,再继续对分母做同样的操作,不断重复下去。例如,27⁄8就逐渐变成了这样:

对于有理数而言,这样的步骤一定会在有限步之后结束,该有理数最终会变成

人们常把它简记为 [a₀; a₁, a₂, a₃, ..., aₙ]。所以,27⁄8的连分数表达就是:

[3; 2, 1, 2]

用这种方法来表示有理数有很多优势。

例如,它能更直观地反应有理数的复杂程度。如果我问你,在有理数的世界里,2⁄7和23⁄125谁更复杂,你肯定会说23⁄125。但23⁄125这么复杂的一个有理数,写成小数竟然只有几个数字:0.184;区区一个2⁄7,写成小数却是一个循环节长达6位的无限小数0.285714285714...。所以,小数展开有时很难反应有理数的复杂程度。如果统一使用连分数,问题就解决了。越复杂的有理数,连分数表达也越繁琐。23⁄125的连分数表达为[0; 5, 2, 3, 3],而2⁄7的连分数表达则简单得多:[0; 3, 2]。

下面两张图是分子从1-30、分母从1-30的所有分数对应的用小数和连分数表示时的复杂程度。左图是小数形式的循环节长度,右图是连分数表达式的长度。越偏紫代表越简单,越偏绿代表越复杂。

√2——无限嵌套连分数

如果把下面这个式子无限地写下去,它会等于多少?

很容易看出,它肯定比1大,因为它等于1加上了一个正的分数;但它肯定比2小,因为这个正的分数是一个比1大的数分之1,它肯定比1小。那这个式子究竟等于多少呢?

有一种非常神奇的方法能帮我们找出答案。把这个式子的值设为x。把第一个2写成1+1,你会发现红色部分的式子本质上和整个式子一模一样(这用到了整个式子有无数多层)。

我们得到了x和它自己的一个关系:

等号左右两边同时乘1+x,于是得到:

x(1+x) = (1+x) + 1

展开得

x + x² = x + 2

整理得

x² = 2

所以x=±√2。考虑到这个式子的值不可能是个负数,因此这个式子的值为√2。所以最初给大家的这个连分数就是√2的连分数形式。

无理数的连分数表达

正如小数有无限小数一样,连分数也有无限连分数。无理数的复杂程度高于所有的有理数,以至于在把它们写成连分数时,流程永远无法终止。换句话说,它们是无限连分数。刚才我们看到了,√2的连分数表达为:

[1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...]

正如无限小数有无限循环小数一样,无限连分数也有无限循环连分数。√2就是一个无限循环连分数。

那么自然底数e呢?它写成连分数是一个无限不循环连分数:

[2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, ...]

虽然它并不是循环的,但却有一个很明显的模式:第一项是2,每第三项是2, 4, 6, 8, 10, ...,其余项都是1。

圆周率π因为是无理数,所以它当然也是一个无限连分数。和e一样,π的连分数形式也是无限不循环连分数。但是在它的连分数表达中,至今仍未发现什么模式,就像它的小数点后数字一样摸不透规律:

[3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, ...]

但即使这样,π的连分数表达也是有用的。小数点同学会的古早文章,我们有史以来第2个,说的就是π的近似分数形式表达355⁄113,它的推算就是利用连分数的思想。除此之外,连分数在数学上还有很多用武之地,欧拉、拉格朗日等大神都研究过连分数。我们的老朋友勒让德对连分数也颇有研究,还提出了“勒让德连分数定理”,不过这次是相当完美的结论,没有反转。

谁更无理

回到最初的问题,√2、e和π谁更无理一点?有了连分数作为评判标准,局势瞬间发生变化:√2的连分数形式是循环连分数,而e和π都是不循环的连分数。显然√2出局。

最后再对比e和π的连分数形式:e虽然是无限不循环连分数,但表达很有规律;π则是毫无章法的一个无限不循环连分数。从这个角度来评,这三个无理数的“无理程度”相比较,e比√2更无理,而π绝对是无理数中的王者级别。

不过,一个无理数有多“无理”,这个问题并不是一个严谨的数学问题。判断“有多无理”时,不同的人心里有不同的标准,从而也会给出不同的定义。

这周我们的主题是“重复”,于是我们站在“循环连分数”的角度看待这个问题。或许哪个星期,在一个不同的主题周,我们会再次面对这个问题。到时候,站在新的角度,我们或许会给出新的答案。你呢?当然也可以有你自己的观点和想法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值