无理数存在性的几何证明

大家知道毕达哥拉斯的名字,是由于那个尽人皆知的定理,这个定理在中国被叫做勾股定理,但很多人不知道以他命名的学派,更不知道这个学派中曾经发生的一个重要事件,这个事件就是无理数的发现。无理数的发现引发了数学上的异常重要风波,它被称为第一次数学危机,而它的发现者也因为破坏了学派创始人的信仰,被残酷的抛入大海。本文用图形化的方式,通过一个例子,来说明无理数存在的合理性。由于受到当时哲学的影响,毕达哥拉斯学派认为世界的物质是由"原子”构成的,但是这里的原子并不是我们现代意义上的原子。基于这一看法,它们提出了一条公设.,这个公设断言:

任意两条直线段均有公度

更具体的说,若ab为任意两条直线段的长度,则存在一条直线,其长度为d,使得

a=md

b= nd

所以:

a=\frac{m}{n}b

通过公倍操作,总可以有办法,使m,n是正整数,如下图所示:

如果把

\frac{1}{n}b

看作单位长度,它就是我们要找到公度长度,n个单位长度就是b,而m个单位长度就是a.

这个过程怎么看怎么像用辗转相除法取最大公约数的过程。注意,这里的整数条件很重要,后面几何证明的时候,要用到这个条件推出矛盾。

也就是说,毕达哥拉斯学派认为:对于任何两个直线段长度,都存在一个长度,在两个线段上都可以放置整数次,所以线段之比可以用整数之比来表示,这种朴素的认知来源于经验,爱因斯坦说过: 数学作为独立与经验的人类思维的产物,为何与物理现实中的客体如此吻合?没有经验依据,而只靠纯粹思维,人类就能够发现实际事务的性质吗?只要数学的命题是涉及实在的,他就是不可靠的;只要它是可靠的,他就不涉及实在.或则和简单论述为,数学法则只要与现实有关,都是不确定的,若是确定的,都于现实无关。量的精确化超过一定限度,总要产生质的变化,比如,气压如果精确到超过一个分子的撞击力大小时,是没有意义的,当电量描述超过个一个电子所带电荷的程度时,是没有意义的,如果原子直径是最小的度量,那所有物体的尺寸都是可公度的。对于数学中的理论证明,要通过纯粹的逻辑推导和形式化的思辨才能达到.

无理数发现者对这个结论说不,他们认为,存在不可通约的量,在这种情况下,你找不到一个公度长度量,使两个长度都是公度量的整数倍。

无理数存在的例子

看下面的等腰直角三角形\Delta ABC,当然我们现在知道AB=\sqrt{2}BC,因为\sqrt{2}是无理数,所以\frac{AB}{BC}是不可通约量,不能由有理数分式表示,但是现在,我们假设不知道这个前提,也不知道勾股定理,看能推导出什么。

a,b,c分别表示角对应对边的长度,证明\frac{AB}{BC}不可通约,也就是证明\frac{c}{a}不可通约,用反证法,假设存在一个通约量d,使

\\c=md \\ a=nd

\frac{AB}{BC}=\frac{md}{nd}=\frac{m}{n}

如果存在通约量d,不管它是整数还是小数,我们总能找到m,n是正整数,这是一个很重要的条件,后面将用它推导出矛盾。

我们绘制辅助线,以A为圆心,AC为半径做圆,交AB于D点,然后再过D点做AB的垂线,交BC于E.容易证明:

BD=DE=EC

BD=AB-AD=c-a=md-nd=(m-n)d

BE=BC-EC=BC-BD=a-(m-n)d=nd-(m-n)d=(2n-m)d

m=\sqrt{2}\cdot n

代入上等式成立。

也就是说,如果d是等腰直角三角形\Delta ABC的斜边和直角边的通约量,那么它同样也是等腰直角三角形\Delta BDE的斜边和直角边的通约量。

同样的辅助线我们可以继续往下画,继续往下推导,由于m,n是正整数,而计算出来的下级等腰直角三角形的边长始终是d的整数被的和差,基于这个原因,会得到一个结论,那就是,如果一直画下去,任意子级的等腰直角三角形的斜边和直角边都有同一个可通约量d.d是所有这些等腰直角三角形的公度。

这个结论肯定是错误的,m,n是有限的正整数,这一过程不可能无限做下去,三角形越来越小,必然会出现三个边都小于d的情况,怎么可能公度一直都是d呢。这样就产生了矛盾。

而这个结论是我们承认“存在可通约量d"的必然结论,所以,只能说明我们的前提一开始就错了,也就是说,根据排中律,不存在这样的d,使得

\\c=md \\ a=nd

所以,通过绘制等腰直角三角形,我们得到了两条无法通约的线段,正方形的边和对角线不可公度。


证明的过程很自然,也找不到破绽,但是总觉得还是缺一点东西,比如,为了证明命题不可通约成立,用了反证法,用几何方式构造出矛盾,从而证明了原命题。但是直角三角形有很多种,比如通常用来说明勾股定理成立的直角边3,4,斜边5的直角三角形,它的斜边与直角边之比分别为\frac{5}{3},\frac{5}{4},就是可以通约的,至少存在通约量1。那问题就来了,同样的证明过程是否能够使用3,4,5边长构成的三角形上,如果同样的证明过程适用于后者,那就是说同一个证明逻辑既可以证明通约,又可以证明不可通约,那证明逻辑就有问题。

当然,这个证明没有问题,有问题的是我们对后者的逻辑,现在就看看对于3,4,5的三角形,上面的证明逻辑那里不适用,在斜边和直角边可通约的情况下,上述的证明一定会有某种变化,否则就会出现和事实(3,4,5可通约)相背离的矛盾。

同样,对于边长比例为3,4,5的三角形,假设通约量d. 

\\c=5d \\ a=4d \\ b=3d

同样的方式,我们绘制辅助线和辅助圆,得到以下结论:

\Delta ABC

\frac{AB}{BC}=\frac{5d}{3d}=\frac{5}{3}

\Delta ADE

\frac{AE}{ED}=\frac{AC-EC}{ED}=\frac{AC-ED}{ED}=\frac{AC}{ED}-1

根据相似性:

\frac{ED}{CB}=\frac{AD}{AC}=\frac{AB-BD}{AC}=\frac{5d-3d}{4d}

所以,

ED=\frac{1}{2}\cdot CB=\frac{3d}{2}

AD=2d=\frac{4d}{2}

AE=\frac{5d}{2}

所以,看出来了吗?虽然我们仍然可以像等腰直角三角形那样一直进行下去,可是从第二个直角三角形开始,d的系数已经是不是整数,就是这个根本差异,导致了同样的过程推到不出同样的结论,等腰直角三角形的情况下,在假设成立必然推出腰线始终被控制在d的整数倍,所以矛盾不可避免。

但是对于第二种可以通约的情况,则没有这种限制,边长系数出现了小数,说明我们可以通过对d再抽取一层和系数相乘划归为整数继续进行下去,斜边和直角边仍然是可规约的,只不过这时候通约量变成了\frac{d}{\lambda},而不是原来的d了,这样就绕开了矛盾,可以一直画下去而保持通约,永远无法找到和题设之间的矛盾,因为本来3,4,5三个边都是可通约的么,推导不出矛盾来。

所以,我们消除了疑虑,通过几何图形化方式证明无理数的存在是可行的。

无理数与有理数有一个重大差别:无理数不可能有一个由整数和四则运算组成的表达式表达。有理数有一个有限的表达式,就是整数分式,但无理数没有。无理数与无穷有千丝万缕的联系,当用小数表示时,它是无限不循环的,需要无穷多个位数,包含无穷多的信息,用连分数表示式,是一个无穷的连分式,用级数表示,是无穷多项级数的累加。它与有理数有着本质的不同。

就拿圆周率\pi来说,在超级计算机的帮助下,现在已经计算出了\pi的前一百万亿位,即便如此,我们甚至都不能说“差不多”计算出了\pi,因为还有“无穷多”的位我们还不知道。

看另一个更漂亮的几何证明:

如果存在最小的整数p,q(约化之后的).

\frac{p}{q}=\sqrt{2}

p^2=2q^2

我们用一个边长为p的大正方形内部套着两个边长为q的小正方形为例来说明,注意内部的两个正方形一定有重叠(假如没有重叠,肯定p^2=2q^2不成立),重叠的深色部分也是一个正方形。

则根据初等几何知识,如果p^2=2q^2,我们可以得出:

中间深色部分正方形的面积=左下角小正方形面积+右上角小正方形面积=2*两个小正方形任意一个面积

假如中间正方形边长是s,小正方形面积是m.

s^2=2m^2成立。并且s=2q-p, m=p-q都是整数。

等等,刚刚不是说了,p,q是最小的满足p^2=2q^2的整数吗?s,m哪里来的? 矛盾!

完善证明

证明过程中,依据“这一过程不可能无限做下去,三角形越来越小,必然会出现三个边都小于d的情况”推导出了矛盾,但是这个计算为什么不可能无限做下去呢?

可以利用自然数的良序原理(well-ordering principle)说明不可能无限做下去,最小数原理是自然数所具有的一种基本性质,即任何非空的自然数集中都有最小的自然数,该原理可以推广到整数集,有理数集。完整表达是:

良序原理指出,自然数集的每个非空子集都有个最小元素,即自然数在其标准的大小关系下构成一良序集

数学证明存在性问题的两种方式

要证明一个数学命题:存在一个x满足A。如果能具体地给出满足性质A的一个或能找到一个机械的程序,使按其进行有限步骤后,就能确定满足性质A的这个x。这样的方法称为构造性方法。与之相比较,数学中应用反证法作的纯存在性的证明称为非构造性方法。

打个比方:构造法的成功使用,解题人就像一个精明的“建筑师”,不仅要思考作为已知信息的“建筑材料”,还要时刻记住将要搭建的“建筑”,即符合命题要求的事物。构造方法就是对应的建筑方法啦!

运用构造法,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。其目的是通过构造的图形等提示已知与未知的关系,确定论证的出发点,使证题思路豁然开朗。

总结:

也许无理数是人类追求数学的美所付出的代价,人类创造了这个虚拟世界(只有在这里,度量才是真正可能的),现在必须去面对它所带来的问题,不能够用分数表示的数,就是无理数,英文叫做irrational,不成比例的意思,它们很自然的出现在几何学中,我们必须学会去适应它,正方形的对角线恰好是其边长的根号2倍,这就是我们所知道的关于它的全部,我们只知道这个数的平方是2,我们并不能说出这个值到底是多少,虽然可以粗略的估计它,但是除此之外,我们一无所知。

补充:

无理数的命令有一个小小的误会,无理数最早是希腊人发现的,他的最初意思并不包含“理性”或者“无理”的意思,而是纯粹说明一种“不可表达的”数,只是后面在翻译成拉丁文过程中出现了偏差,后面的翻译将错就错,造成了一个数学上的一个误解。

无理数的发现使毕达哥拉斯的万物皆数的理论就出现了一个漏洞,存在线段的长度无法用整数比进行度量,据说西帕索斯因为这个发现而遭到杀害,毕达哥拉斯学派担心这个秘密被泄漏出去,而把西帕索斯投入大海。

历史的车轮不会倒退,古希腊的哲学家和数学家们正视了这个问题,经过欧几里德等人的工作,最终严格定义了不可公度和无理量,纳入了数学体系。

几何原本中对不可公度的定义:

如果从两个不等量的大量中连续减去小量,直到余量小于小量,在从小量中连续减去余量直到小于余量,这样一直做下去,当所余的量总不能量尽它前面的量时,则称两个量不可公度。

这里出现了一个有意思的现象,不可公度是用欧几里德算法能够停下来定义的,由于欧几里德算法是递归的,也就是说递归能否终止成了判断条件。递归和物理量似乎存在着某种深刻的联系,或许蕴含着递归的本质,分形的本质。

无理数都没有规律么?

无理数是无限不循环小数,在我们的印象中,无限不循环小数就意味着混乱,没有规则,这个印象主要来源于我们常见的一些无理数,比如π,e, √2等,看起来都是乱糟糟的,没有规律,而且无穷无尽。但是违反直觉的是,并不是所有的无限不循环小数都是乱糟糟的,比如这个数字:

0.10100100010000.....等等,它也是无限步循环的,但是却很有规律,我们甚至可以写出它的通项公式出来:

digital(N)= \left\{\begin{matrix} 1, N=\frac{k(k+1)}{2}\\ \\ 0, \ \ \ \ \ others \end{matrix}\right.

所以无限步循环并不达标没有规律,它这是没有循环这一种规律而已,但是可以有其他的规律。我们可以模仿周期函数来区分无限循环小数和无限不循环小数。


结束!

  • 9
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

papaofdoudou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值