文章目录
0 导论
0.1 常用公式
0.1.1 三次方
( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 a b + 2 b c + 2 c a (a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ca (a+b+c)2=a2+b2+c2+2ab+2bc+2ca
0.2 数学符号
- Z:全体整数
- N+:正整数
- N:自然数,非负整数
- R:实数
- C:复数
- Q:有理数
- D是特定的集合
- argmin:使后面的式子达到最小值的x的取值,若cosx在π处取得最小值,则argmin(cosx)=π
- sup:上界.
- Σ,for循环
- 双Σ,双for循环
0.3 函数
幂指对正余弦 反三角
0.3.1 指数函数
指数函数随着x的增大,值得增长是所有函数中最快的,即指数增长。
e的-x
0.3.2 对数函数
运算: lna+lnb=lnab
a
3
=
e
3
l
n
a
a^3 = e^{3lna}
a3=e3lna
ln10/9=ln10-ln9
am=N 以a为底N的对数 logaN=m。
始为基,知为果,求为次。
对N取对数,就是说10的几次等于N
将乘除变为指数的加减。取对数可缩小。
超前滞后
0.3.3 正弦函数
sin30°=1/2;sin30=-0.988
cos30=0.154;cos30°=√3/2
tan30=-6.405;tan30°=√3/3
sin45=0.851;sin45°=√2/2
cos45=0.525;cos45°=sin45°=√2/2
tan45=1.620;tan45°=1
sin60=-0.305;sin60°=√3/2
cos60=-0.952;cos60°=1/2
tan60=0.320;tan60°=√3
sin90=0.894;sin90°=cos0°=1
cos90=-0.448;cos90°=sin0°=0
0.4 参数方程
参数方程具有多方面的意义,与圆的标准方程相比,在不同的应用场景和问题解决中有独特的优势,以下从多个维度进行分析:
从几何角度
- 直观体现点的运动
- 圆的标准方程 ( x − a ) 2 + ( y − b ) 2 = r 2 (x - a)^2+(y - b)^2 = r^2 (x−a)2+(y−b)2=r2,主要强调的是圆上点到圆心的距离关系,它是一种静态的描述,重点展示圆的位置(由圆心 ( a , b ) (a,b) (a,b)确定)和大小(由半径 r r r确定)。
- 而圆的参数方程 { x = a + r cos θ y = b + r sin θ \begin{cases}x=a + r\cos\theta\\y=b + r\sin\theta\end{cases} {x=a+rcosθy=b+rsinθ( θ \theta θ为参数),能直观地体现圆上点的运动过程。参数 θ \theta θ可以看作是从圆心出发的射线与 x x x轴正方向的夹角,随着 θ \theta θ从 0 0 0变化到 2 π 2\pi 2π,点 ( x , y ) (x,y) (x,y)就会沿着圆做圆周运动,清晰地展示了点在圆上的动态变化。
- 方便描述曲线特征
- 标准方程在描述圆的整体特征,如圆心和半径时非常直接,但对于一些涉及圆上点的相对位置、方向等特征的描述不够直观。
- 参数方程可以通过参数的变化方便地表示圆上点的各种特征。例如,在研究圆的切线问题时,通过参数方程可以方便地找到圆上某一点对应的切线斜率,因为可以利用参数方程对参数求导来得到切线的斜率表达式。
从代数角度
- 简化计算
- 在一些涉及圆的复杂计算问题中,标准方程可能会使计算变得繁琐。例如,当求解圆与直线的交点问题时,如果使用标准方程,可能需要联立方程并进行复杂的代数运算。
- 参数方程可以将问题转化为关于参数的方程,从而简化计算。将圆的参数方程代入直线方程,就可以得到一个关于参数 θ \theta θ的方程,求解这个方程相对简单。比如,直线 y = k x + m y=kx + m y=kx+m与圆 { x = a + r cos θ y = b + r sin θ \begin{cases}x=a + r\cos\theta\\y=b + r\sin\theta\end{cases} {x=a+rcosθy=b+rsinθ相交,将参数方程代入直线方程可得 b + r sin θ = k ( a + r cos θ ) + m b + r\sin\theta=k(a + r\cos\theta)+m b+rsinθ=k(a+rcosθ)+m,这是一个关于 θ \theta θ的三角函数方程,求解起来相对容易。
- 增加变量维度
- 标准方程只有 x x x和 y y y两个变量,描述相对局限。
- 参数方程引入了参数,增加了变量维度,使得问题的描述更加灵活。例如,在研究多个圆的相对运动或者圆与其他曲线的复杂关系时,参数方程可以通过不同的参数设置来分别描述各个曲线的变化,从而更方便地研究它们之间的相互作用。
从实际应用角度
- 解决物理问题
- 在物理学中,很多问题涉及到圆周运动,标准方程难以直接描述物体在圆周上的运动状态。
- 参数方程则可以很好地解决这类问题。例如,一个质点在圆周上做匀速圆周运动,其位置可以用圆的参数方程来表示,通过参数 θ \theta θ与时间 t t t的关系(如 θ = ω t + φ \theta=\omega t+\varphi θ=ωt+φ,其中 ω \omega ω是角速度, φ \varphi φ是初始相位),可以方便地研究质点在不同时刻的位置、速度和加速度等物理量。
- 工程设计与计算机图形学
- 在工程设计和计算机图形学中,需要精确地绘制和控制圆的形状和位置。标准方程在图形绘制时,可能需要通过数值方法来确定圆上的点,计算量较大。
- 参数方程可以通过改变参数的值来方便地生成圆上的点,从而实现圆的绘制。同时,在进行图形变换(如旋转、平移等)时,参数方程的计算更加简单和直观。
将圆的标准方程转换成圆的参数方程,可借助三角函数的平方关系,以下为你详细介绍转换步骤:
1. 明确圆的标准方程
圆的标准方程为 ( x − a ) 2 + ( y − b ) 2 = r 2 (x - a)^2+(y - b)^2 = r^2 (x−a)2+(y−b)2=r2,其中 ( a , b ) (a,b) (a,b)表示圆心的坐标, r r r表示圆的半径。这个方程描述了圆上任意一点 ( x , y ) (x,y) (x,y)到圆心 ( a , b ) (a,b) (a,b)的距离等于半径 r r r。
2. 引入三角函数关系
根据三角函数的平方和关系 cos 2 θ + sin 2 θ = 1 \cos^{2}\theta+\sin^{2}\theta = 1 cos2θ+sin2θ=1,对于圆上的点 ( x , y ) (x,y) (x,y),我们设 x − a r = cos θ \frac{x - a}{r}=\cos\theta rx−a=cosθ, y − b r = sin θ \frac{y - b}{r}=\sin\theta ry−b=sinθ。这里引入参数 θ \theta θ,它的几何意义是圆心与圆上一点的连线和 x x x轴正方向的夹角。
3. 求解 x x x和 y y y
对 x − a r = cos θ \frac{x - a}{r}=\cos\theta rx−a=cosθ和 y − b r = sin θ \frac{y - b}{r}=\sin\theta ry−b=sinθ进行变形求解:
- 由 x − a r = cos θ \frac{x - a}{r}=\cos\theta rx−a=cosθ,等式两边同时乘以 r r r,再移项可得 x = a + r cos θ x=a + r\cos\theta x=a+rcosθ。
- 由 y − b r = sin θ \frac{y - b}{r}=\sin\theta ry−b=sinθ,等式两边同时乘以 r r r,再移项可得 y = b + r sin θ y=b + r\sin\theta y=b+rsinθ。
4. 得到圆的参数方程
综上,圆 ( x − a ) 2 + ( y − b ) 2 = r 2 (x - a)^2+(y - b)^2 = r^2 (x−a)2+(y−b)2=r2的参数方程为 { x = a + r cos θ y = b + r sin θ \begin{cases}x=a + r\cos\theta\\y=b + r\sin\theta\end{cases} {x=a+rcosθy=b+rsinθ,其中 θ \theta θ为参数, θ ∈ [ 0 , 2 π ) \theta\in[0,2\pi) θ∈[0,2π)。
示例
例如,已知圆的标准方程为
(
x
−
3
)
2
+
(
y
+
2
)
2
=
25
(x - 3)^2+(y + 2)^2 = 25
(x−3)2+(y+2)2=25,这里圆心坐标
(
a
,
b
)
=
(
3
,
−
2
)
(a,b)=(3,-2)
(a,b)=(3,−2),半径
r
=
5
r = 5
r=5。
按照上述转换方法,可得该圆的参数方程为
{
x
=
3
+
5
cos
θ
y
=
−
2
+
5
sin
θ
\begin{cases}x=3 + 5\cos\theta\\y=-2 + 5\sin\theta\end{cases}
{x=3+5cosθy=−2+5sinθ,
θ
∈
[
0
,
2
π
)
\theta\in[0,2\pi)
θ∈[0,2π)。
0.5 单位转换
1磅=0.454千克
0.6迪拉克函数
H(x)阶跃函数:
对阶跃函数取微分可以得到δ函数。事实上对于一个不连续的函数取微分都可以出现δ函数。
δ函数定义:
δ(x)=0,(x≠0)
0.7 向量
向量点积 ( a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ × ∣ b ⃗ ∣ × cos θ ) (\vec{a}\cdot\vec{b} =|\vec{a}|×|\vec{b}|×\cos\theta) (a⋅b=∣a∣×∣b∣×cosθ),展开用坐标表示,若 ( a ⃗ = ( x 1 , y 1 ) (\vec{a}=(x_1,y_1) (a=(x1,y1), b ⃗ = ( x 2 , y 2 ) \vec{b}=(x_2,y_2) b=(x2,y2),则 a ⃗ ⋅ b ⃗ = x 1 x 2 + y 1 y 2 \vec{a}\cdot\vec{b}=x_1x_2 + y_1y_2 a⋅b=x1x2+y1y2。
向量积 a ⃗ × b ⃗ \vec{a}×\vec{b} a×b是个向量,大小是 ∣ a ⃗ ∣ × ∣ b ⃗ ∣ × sin θ |\vec{a}|×|\vec{b}|×\sin\theta ∣a∣×∣b∣×sinθ,方向用右手定则判断。这里的 θ \theta θ都是两向量的夹角。
0.8 诱导函数
诱导公式主要是用来将任意角的三角函数转化为锐角三角函数,方便计算。有个口诀“奇变偶不变,符号看象限”。先说sin和cos,比如sin(α + 2kπ) = sinα,cos(α + 2kπ) = cosα,k是整数,这就是说加上整数倍的2π,函数值不变。还有sin(π - α) = sinα,cos(π - α) = -cosα,sin(π + α) = -sinα,cos(π + α) = -cosα。再看tan,tan(α + kπ) = tanα,tan(π - α) = -tanα,tan(π + α) = tanα。这些公式的核心就是通过角度的变换,找到与已知锐角三角函数的关系。
1、极限
1.1 定义
数列极限(ε-N)、函数极限(ε-δ)、无穷极限(ε-X)
Limf(x)=A⇔/等价于/充要f(x)=A+α,其中α→0
1.1.1 数列极限(ε—N)
对于任意ε>0,都∃N>0,n>N时,有
∣
a
n
−
A
∣
<
ε
|a_n-A|<ε
∣an−A∣<ε,称A为数列{an}的极限,即
1.1.2 函数极限(ε-δ)
对任意ε>0,都∃δ>0,0<|x-a|<δ时,有|f(x)-A|<ε
称A为函数f(x)当x→a的极限,即
1.1.3无穷极限(ε-X)
1.对任意ε>0,都∃X>0,x<-X时,有|f(x)-A|<ε
称A为函数f(x)当x→-∞的极限,即
2.对任意ε>0,都∃X>0,|x|>X时,有|f(x)-A|<ε
称A为函数f(x)当x→+∞的极限,即
1.1.4无穷小
无穷小是一个向0奔跑的变量
通过研究这种向0奔跑的过程,我们可以得到不同无穷小之间的大小关系。
假如说x→0,y→0
当x=0.1时,y=0.07
当x=0.01时,y=0.005.
说明x和y向0奔跑的速度完全是不同的。x和y的函数关系确定了奔跑速度之间的关系。
高阶无穷小,y从一个足球表明向0趋近,x从一个乒乓球表面向0趋近,且x比y跑得快。x就是y的高阶无穷小
也就是说:
无穷小是一种向0奔跑的变量
不同无穷小之间可以具有函数关系
具有函数关系的两个无穷小,在向0奔跑过程中,它们的大小比例趋于一个极限,这个极限就代表了两个无穷下之间的大小关系。
此时x2,就是x的高阶无穷小,x2的权是1,3x^2的权是3。权和阶可以囊括所有无穷小的特点。同时无穷小的倒数无穷大,
4
/
x
2
4/x^2
4/x2就是权为4,阶为2的无穷大。
然后把所有的有限实数表示为0阶的无穷小或无穷大,实数的值代表他们的权值。
形成新的数域:无穷分阶∈。每个数都有权和阶两个属性。所以表示为
其中A到K都代表无穷分阶数域中的数。上半平面为无穷小,下半平面为无穷大。
用a(0)^b表示,a代表权,b代表阶,b>0时是无穷小,称权为a的b阶无穷小,b<0时是无穷大,在下半平面,称权为a的-b阶无穷大。
用a(∞)^b表示,a代表权,b代表阶,b>0时是无穷大,称权为a的b阶无穷大,b<0时是无穷小,在上半平面,称权为a的-b阶无穷小。
1.2.极限的性质
唯一性、保号性、有界性、列与子列
1.2.1保号性
前提:有>0,
条件:当∃δ>0,使0<|x-a|<δ时
结果:则f(x)>0
1.2.2有界性
- 1.函数局部有界
前提:有
条件:当∃δ>0与M>0,使0<|x-a|<δ时
结果:则|f(x)|≤M - 2.数列有界
前提:有
条件:∃M>0
结果:使|an|≤M
数列收敛则有界,数列有界不一定收敛
1.3.极限的运算性质
1.4.极限存在定理
夹逼、单调有界
1.4.1夹逼定理
函数夹逼定理
前提:f(x)≤g(x)≤h(x)
条件:limf(x)=limh(x)=A
结果:limg(x)=A
1.4.2 单调有界必有极限
1.5 无穷小的性质
(1)有限个无穷小的和、差、积仍是无穷小
(2)无穷小×常数仍是无穷小
(3)有界函数与无穷小之积仍是无穷小
麦克劳林公式
有加有减,有减无减
1.6 连续与间断
1.6.1 连续
1.6.1.1 在一点连续
-
f(x)在x=a处连续 即
-
f(x) 在[a,b]上连续
1.6.1.2 在一段连续
即f(x)在[a,b]内处处连续,同时f(a)=f(a+0),f(b)=f(b-0).
1.6.2 间断
为什么会间断?
因为不存在而间断,如1/x,或tanx的x=0
1.6.2.1 第一类间断
在一点处,左右极限都∃
1.6.2.2可去间断
f(a-0)=f(a+0)≠f(a)
1.6.2.3跳跃间断
f(a-0)≠f(a+0)
1.6.2.4第二类间断
在一点处,左右极限不都∃
2 导数
2.1 导数定义
Δx→0,
x
→
x
0
x→x_0
x→x0
前提:有
- y = f ( x ) , x ∈ D , x 0 ∈ D , x 0 + Δ x ∈ D y=f(x),x∈D,x_0∈D,x_0+Δx∈D y=f(x),x∈D,x0∈D,x0+Δx∈D,D为特定集合。
- Δ y = f ( x 0 + Δ x ) − f ( x 0 ) Δy=f(x_0+Δx)-f(x_0) Δy=f(x0+Δx)−f(x0)
条件:若
或者存在
则
y
=
f
(
x
)
在
x
=
x
0
y=f(x)在x=x_0
y=f(x)在x=x0处可导。
上面的极限记函数
f
′
(
x
0
)
f'(x_0)
f′(x0)或
d
y
d
x
∣
x
=
x
0
\frac{dy}{dx}|_{x=x_0}
dxdy∣x=x0。
导数就是势存在,势的表达形式是极限
-
y=f(x)在x=x0处可导的充要是 f ’ − ( x 0 ) f’_-(x_0) f’−(x0)与 f ’ + ( x 0 ) f’_+(x_0) f’+(x0)都存在
左导数f’-(x0):右导数f’+(x0):
-
连续可导
函数在一个点的连续,所谓的连续指的就是极限值等于函数值。
f(x)可导,且f’(x)连续,称之为连续可导 -
可导与连续
可导一定连续,连续不一定可导 -
奇偶性
可导奇函数的导为偶函数
可导偶函数的导为奇函数
另外:可导偶函数的f’(0)=0,因为偶函数关于y轴对称
2.2导数基本公式
所有的导数公式都是根据下面的导数定义求极限算出来的。
比如:
和
2.2.1幂指对三反三特殊
幂
指
对
三
(
t
a
n
x
)
’
=
s
e
c
2
x
(tanx)’=sec^2x
(tanx)’=sec2x
(
c
o
t
x
)
’
=
−
c
s
c
2
x
(cotx)’=-csc^2x
(cotx)’=−csc2x
(secx)’=tanxsecx
(cscx)’=-cotxcscx
反三
特殊
,
2.2.2复合函数求导
条件:若y=f(x)可导,u=φ(x),φ’(x)≠0
结果:则y=f[φ(x)]可导,
2.2.3 反函数求导
条件:若X=φ(y)为y=f(x)的反函数
结果:则
而
2.2.4 隐函数求导
- 对
e
x
+
y
=
x
2
+
y
2
+
1
e^x+y=x^2+y²+1
ex+y=x2+y2+1,求dy/dx
两边对x求导
则=
2.2.5 参数方程求导
由确定的函数为 参数方程确定的函数
2.2.6 分段函数求导
2.2.7 高阶求导
3. 微分
y=f(x)
X
、
x
0
、
x
o
+
Δ
x
X、x_0、x_o+Δx
X、x0、xo+Δx皆属于D(特定的集合)
Δ
y
=
f
(
x
0
+
Δ
x
)
−
f
(
x
0
)
Δy=f(x_0+Δx)-f(x0)
Δy=f(x0+Δx)−f(x0)为f(x)在x0处的增量
若Δy=AΔx+o(Δx),称f(x)在
x
0
x_0
x0处可微
AΔx称f(x)在
x
0
x_0
x0处微分
记
d
y
∣
x
=
x
0
=
A
Δ
x
dy|_{x=x0}=AΔx
dy∣x=x0=AΔx或
d
y
∣
x
=
x
0
=
A
d
x
dy|_{x=x0}=Adx
dy∣x=x0=Adx
Δy-dy=o(Δx)
- 可导等价于可微
- 可导(可微)必连续
3.1中值定理
3.1.1 罗尔中值定理
前提:f(x)在[a,b]闭内连续,开内可导
条件:若f(a)=f(b)
结果:∃ξ∈开(a,b),使f’(ξ)=0
3.1.2 拉格朗日中值定理
前提:f(x)在[a,b]闭内连续,开内可导
结果:∃ξ∈开(a,b),使
证明:设K法,转化为罗尔问题
设
f(b)-f(a)=kb-ka
f(b)-kb=f(a)-ka
设F(x)=f(x)-kx
则F(b)=F(a)
则∃F’(ξ)=0,即f’(ξ)-k=0,即f’(ξ)=k
证得
3.1.3柯西中值定理
前提:f(x)与g(x)在[a,b]闭内连续,开内可导
条件:g’(x)≠0(a<x<b)
结果:∃ξ∈开(a,b),使
证明:设K法,转化为罗尔问题
3.1.4泰勒中值定理
拉格朗日型
前提f(x)在
x
=
x
0
x=x_0
x=x0的邻域内n+1阶可导
(ξ在x与x0之间)
皮尔诺型
note:泰勒展开揭示了一个函数立于一点预测任何一点的值。
3.2 单调性
定理: 在区间I内,f’>0,则f(x)在区间I内单增
在区间I内,f’<0,则f(x)在区间I内单减
3.3极值的判定
1.求f’(x),求出f(x)的驻点以及不可导点。
2.判别法
3.3.1第一充分条件
① 存在δ>0
② 当x∈(
x
0
x_0
x0-δ,x0)时,有f’(x)>0,当
x
∈
(
x
0
,
x
0
+
δ
)
x∈(x_0,x_0 +δ)
x∈(x0,x0+δ)时,有f’(x)<0,则
x
=
x
0
x=x_0
x=x0为f(x)的极大值点。
③ 当
x
∈
(
x
0
−
δ
,
x
0
)
x∈(x_0-δ,x0)
x∈(x0−δ,x0)时,有f’(x)<0,当
x
∈
(
x
0
,
x
0
+
δ
)
x∈(x_0,x_0 +δ)
x∈(x0,x0+δ)时,有f’(x)>0,则
x
=
x
0
x=x_0
x=x0为f(x)的极小值点。
一阶势由正变负为极大,一阶势由为负变正为极小
3.3.2第二充分条件
① 函数f(x)在
x
=
x
0
x=x_0
x=x0处二阶可导,且f’(x)=0,
② F”(x)>0
x
=
x
0
x=x_0
x=x0为f(x)的极小值点
③ F”(x)<0,
x
=
x
0
x=x_0
x=x0为f(x)的极大值点
一阶势为零,二阶势为增(一阶势由负变正)为极小
一阶势为零,二阶势为减(一阶势由正变负)为极大
3.3.3泰勒公式判别法
3.4凹凸性与拐点的判别
- 凹函数 x1≠x2
- 凸函数x1≠x2
判别法:
当x∈I时,f’’>0,则y=f(x)为凹函数
当x∈I时,f’’<0,则y=f(x)为凸函数
- 拐点
在区间I上,若f(x)在 x = x 0 x=x_0 x=x0两侧的凹凸性不同,则 x = x 0 x=x_0 x=x0处有曲线f(x)的拐点.
判别法:
条件:若f(x)三阶可导,f’’(x0)=0,但f’’’(x0)≠0
结果:则x=x0处有曲线f(x)的拐点.
3.5渐近线
3.5.1 水平渐近线
条件:
结果:称y=A 为f(x)的水平渐近线
3.5.2 铅直渐近线
条件;若或f(a-0)=∞,或f(a+0)=∞
结果:称x=a 为f(x)的铅直渐近线
3.5.3 斜渐近线
条件:若,而
结果;则y=ax+b为f(x)的斜渐近线
3.6弧微分,曲率,曲率半径
弧微分公式
曲率公式
曲率半径公式
R=1/k
4.不定积分
4.1定义
不定积分是一种操作结果
条件:若F(x)为f(x)的原函数
结果:则f(x)的所有原函数F(x)+C为f(x)的不定积分
即∫f(x)dx=F(x)+C
4.2常见的不定积分
幂指对三反三
4.2.1 幂
其中a为常数且 a ≠ -1
4.2.2指
4.2.3 三
∫ cosx dx = sinx + C
∫ sinx dx = - cosx + C
∫ cotx dx = ln|sinx| + C
∫ tanx dx = - ln|cosx| + C
∫ secx dx =ln|secx + tanx| + C
∫ cscx dx =ln|cscx - cotx| + C
∫ sec^(2)x dx = tanx + C
∫ csc²x dx = - cotx + C
∫ secxtanx dx = secx + C
∫ cscxcotx dx = - cscx + C
4.2.4 反三
常数在前
常数在后
4.3不定积分的计算
4.3.1、换元法
4.3.2、三角代换
4.3.3、倒代换
4.3.4、分部积分法
条件:若u(x),v(x)连续可导
结果:则∫udv=uv-∫vdu
推导: (uv)‘=u’v+uv’ 故u’v=(uv)‘-uv’
两边积分得:∫ u’v dx=∫ (uv)’ dx - ∫ uv’ dx
即:∫udv=uv-∫vdu,这就是分部积分公式
适用对象
4.3.5、有理函数积分
有理函数R:R(x)=,其中P、Q为多项式
真分式——将R(x)拆成两部分和
(1)
(2)
因为分母上有二次,故设Bx+C
(3)
多项式除法
5.定积分
5.1 定义
前提:y=f(x)在[a,b]有界
化整为零:
a
=
x
0
<
x
1
<
.
.
.
<
x
n
=
b
a=x_0<x_1<...<x_n=b
a=x0<x1<...<xn=b
[
a
,
b
]
=
[
x
0
,
x
1
]
U
[
x
1
,
x
2
]
U
.
.
.
U
[
x
n
−
1
,
x
n
]
[a,b]=[x_0,x_1]U[x_1,x_2]U...U[x_{n-1},x_n]
[a,b]=[x0,x1]U[x1,x2]U...U[xn−1,xn]
1
≤
i
≤
n
,
Δ
x
i
=
x
i
−
x
i
−
1
,
ξ
i
∈
[
x
i
−
1
,
x
i
]
,
s
i
=
f
(
ξ
i
)
Δ
x
i
1≤i≤n , Δx_i=x_i-x_{i-1} , ξ_i∈[x_{i-1}, x_i] , s_i=f(ξ_i)Δx_i
1≤i≤n,Δxi=xi−xi−1,ξi∈[xi−1,xi],si=f(ξi)Δxi
积零为整:取λ=,若
∃
5.2 基本性质
1)区间可拆
2)函数不等式,在[a,b]上,f(x)≥g(x),则
3)绝对值不等式,若f(x)在[a,b]上连续,则
4)有界不等式,若f(x)在[a,b]上,m≤f(x)≤M,则
5)积分中值定理
条件:若f(x)在[a,b]闭内连续
结果:则∃ξ∈[a,b],使
5.3.基本原理
5.3.1定理
5.3.1.1积分导数定理
条件:设f(x)在[a,b]闭内连续,令
结果:Φ’(x)=f(X)
注
故
中的两个x的含义不同;
中的两个x含义相同
5.3.1.2牛顿-莱布尼兹公式
f(x)在[a,b]内连续,F(x)是f(x)的一个原函数,则
5.3.1.3积分区间对称性
5.3.1.4 定积分存在定理
区间有限,函数有界
5.3.2三角函数积分性质
(1)条件:设f(x)在[0,1]连续
结果:
特别:
(2)条件:设f(x) 在[0,1]上连续
(3)条件:f(x)在[0,1]上连续
(4)条件;f(x)在[0,1]上连续
5.3.3 周期函数积分性质
条件: f(x)是以T为周期的连续函数
5.4.定积分的计算
5.4.1换元积分法
条件:f(x)在[a,b]连续,令x=φ(t),φ(α)=a
结果:
5.4.2分部积分法
条件:有u(x),v(x),在[a,b]上连续可导
结果:则
5.5 广义积分
5.5.1区间无限
5.5.1.1 f(x)在[a,+∞)上连续
定义:
前提:对于
条件:若存在,且=A,
结果:则收敛,且=A
- 极限判别法:
条件:若,且k>1
结果:则收敛
条件:若,且k≤1,或者M>0
结果:则发散
5.5.1.2 f(x)在(-∞,a]上连续
定义:
前提:对于
条件:若存在,且=A,
结果:则收敛,且=A
极限判别法:
条件:若,且k>1
结果:则收敛
条件:若,且k≤1,或者M>0
结果:则发散
5.5.1.3 f(x)在(-∞,+∞)上连续
当与
皆收敛时,广义积分
收敛
当x→±∞时,k>1,则原函数如1/(x^2)收敛
当x→某个数时,k≤1,则原函数如(1/x)收敛
如:求解
note:由于±无穷区间并不是严格对称的,因为∞+1=∞
5.5.2区间有限的无界函数
5.5.2.1 f(x)在(a,b]上连续,f(x)在x=a的右邻域内无界
定义:
前提:对于任意ε>0,有
条件:若存在,且=A
结果:则称广义积分收敛,且=A
极限判别法:
条件:若,且k<1
结果:则收敛
条件:若,且k≥1
结果:则发散
5.5.2.2 f(x)在[a,b)上连续,f(x)在x=b的左邻域内无界
定义:
极限判别法:
5.5.2.3 f(x)在[a,c)U(c,b]上连续,在x=c的去心邻域内无界
5.6.定积分的应用
5.6.1面积
元素法
(1)极坐标面积
(2)双极坐标面积
(3)旋转曲面的面积
若
5.6.2体积
(1)绕x
(2)绕y
(3)几何体位于x=a与x=b之间
5.6.3曲线长
6.4常见特殊曲线
① 圆一
直角坐标:
极坐标:r=R
② 圆二
③ 圆三
直角坐标:x²+y²=2Ry
极坐标:r=2Rsinθ
④ 摆线
参数方程:
⑤ 心形线
极坐标:r=a(1+cosθ)
⑥ 双妞线
直角坐标:(x²+y²)²=a²(x²-y²)
极坐标:r²=a²cos2θ
⑦ 星形线
直角坐标:
参数方程:
6.多元函数微分学
6.1多元函数极限
6.2多元函数连续
6.3偏导数及其求法
6.3.1梯度
对于多元函数f(X)=f(x1,…,xn)来说,它们的偏导数就是梯度
多元函数f(x)在x0处的泰勒级数是:
6.3.2 梯度下降法
从数学上来说,梯度方向是函数增长速度最快的方向。
因此,梯度的反方向就是函数减少最快的方向
假设,希望求解的目标函数f(X)=f(x1,…,xn)的最小值
一个初始点
基于学习率η>0构造一个迭代过程:
当i≥0时,迭代次数
,对于x1的全部迭代,i变动
…
其中:
一旦达到收敛条件,迭代就结束。
有可能lim(i→∞)使函数值→0.
反之,如果要求最大值,就沿着梯度的反方向前进。
无论计算最大还是最小,都需要构建一个迭代关系:
对于所有的i,都满足
x
i
+
1
=
g
(
x
i
)
x^{i+1}=g(x^i)
xi+1=g(xi)
函数g可以表达为
6.4全微分
6.5连续、可偏导、可全微的关系
定理一:若函数f(x,y)在点
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0)处可微,则该点处既连连续又可偏导,反之不对。
定理二:若f(x,y)两个偏导数连续,则f(x,y)一定可微,反之不对
定理三:若f(x,y)具有二阶连续的偏导数,则
f
’
’
x
y
=
f
’
’
y
x
(
x
,
y
)
f’’_{xy}=f’’_{yx}(x,y)
f’’xy=f’’yx(x,y)
6.6求偏导类型
6.6.1显函数求偏导
显函数求偏导即z=f(x,y)对x,y求偏导
对x求偏导时,只需要将y看成常数,
6.6.2复合函数求偏导
1.第一种情况:
2.第二种情况:
3.第三种情况:
6.6.3隐函数求偏导
1.一个约束的情形:
前提:设F(x,y,z)=0在的邻域内连续可偏导。
由F(x,y,z)=0可唯一确定具有具有连续偏导数的二元函数z=f(x,y)
2.多个约束的情形:
6.7无条件极值与条件极值
6.7.1二元函数极值定义
对于二元函数z=f(x,y);
设
(
x
,
y
)
∈
D
,(
x
0
,
y
0
)
∈
D
(x,y)∈D ,(x_0,y_0)∈D
(x,y)∈D,(x0,y0)∈D,
若∃δ>0,当0<<δ时,有
f
(
x
,
y
)
<
f
(
x
0
,
y
0
)
f(x,y)<f(x_0,y_0)
f(x,y)<f(x0,y0)
称点
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0)为z=f(x,y)的极大值点,
f
(
x
0
,
y
0
)
f(x_0,y_0)
f(x0,y0)称函数f(x,y)的极大值
极小值同理
6.7.2二元函数无条件极值步骤
6.7.3二元函数有条件极值步骤
对二元函数z=f(x,y),在约束条件(第三条件)φ(x,y)=0下的极值
- 方法一:拉格朗日乘数法
令F=f(x,y)+λφ(x,y)
有:
求出(x,y)的值,确定最优解。
- 方法二:转化为一元函数极值
由φ(x,y)=0求y=y(x),代入z=f(x,y),得z=f[x,y(x)]
再求一元函数z=f[x,y(x)]极值 - 方法三:参数方程
7.微分方程
7.0定义
微分方程:含有导数或微分的方程
微分方程阶数:导数或微分的最高阶
微分方程的解:使微分方程成立的函数
特解:不含任意常数的解
通解:常数个数与阶数相等的解
线性:符合可加性与齐次性的变换
Note:也可以用y=f(ax)=af(x)来表示齐次。幂指对皆为齐次。
非齐次:Q(x) 为y的零次
Note:
齐次坐标:如果一个二维点(x,y)与形如(kx,ky,k)的所有三元坐标都是等价的
它们就是这个坐标的齐次坐标
将齐次坐标,除以第三个数就可以得到原始二维坐标
但,注意K≠0,(x,y,0)表示∞远
线性变换:
通常用一个矩阵来表示线性变换
即将直线上的点(向量)变换到另一根直线上去
相反,角,长度,则都不能维持原样
7.1一阶微分方程
7.1.1可分离变量的微分方程
7.1.2齐次微分方程
7.1.3一阶齐次线性微分方程
7.1.4一阶非齐次线性微分方程
7.1.5伯努利方程
7.1.6全微分方程
7.2可降阶的高阶微分方程
7.2.1 n阶型
n阶微分方程:
y
(
n
)
=
f
(
x
)
y^{(n)}=f(x)
y(n)=f(x)
解法:n次积分
7.2.2 缺y型
7.2.3缺x型
7.3高阶微分方程
7.3.1n阶齐次线性微分方程
7.3.2n阶非齐次线性微分方程
7.3.3高阶线性微分方程解的结构
7.3.4二阶常系数齐次线性微分方程的解
二级常系数齐次线性微分方程:y’’+py’+qy=0
求解特征方程:λ²+pλ+q=0
7.3.5二阶常系数非齐次线性微分方程的特解
二级常系数非齐次线性微分方程:y’’+py’+qy=f(x)
- 当
f
(
x
)
=
P
n
(
x
)
e
k
x
f(x)=P_n(x)e^{kx}
f(x)=Pn(x)ekx
情形一:k非特征值
情形二:k与一个特征值相同
情形三:k与两个特征值相同
- 当
f
(
x
)
=
e
a
x
[
P
(
x
)
c
o
s
β
x
+
P
’
(
x
)
s
i
n
β
x
]
f(x)=e^{ax}[P(x)cosβx+P’(x)sinβx]
f(x)=eax[P(x)cosβx+P’(x)sinβx]
Note:按右边的形式假设,正弦余弦都有,多项式以最高次为准
如: y ’’ − 2 y ’ + 2 y = x e x c o s x y’’-2y’+2y=xe^xcosx y’’−2y’+2y=xexcosx
特征方程:λ²-2λ+2=0 解得: λ 1 , 2 = 1 ± i λ_{1,2}=1±i λ1,2=1±i ,而α=1,β=1
设: y 0 ( x ) = x e x [ ( a x + b ) c o s x + ( c x + d ) s i n x ] y_0(x)=xe^x[(ax+b)cosx+(cx+d)sinx] y0(x)=xex[(ax+b)cosx+(cx+d)sinx]
7.4不一样的向量
7.4.1线性变换
线性变换的代数定义:
数学中,只要符合下面两个性质的就是线性变换(T代表变换)
Note:线性变换就是对一个向量的旋转、缩放、斜切;
Note:线性变换后,原本一条直线上等距的点仍然在同一直线且等距;所有起点位于原点的向量经过变换后起点仍然位于原点。(平移不是线性变换。)
如:两个多项式函数 f(x)=1+2x+3x² g(x)=2+3x+4x²
验证:
可加性:D(f(x)+g(x))=D(f(x))+D(g(x))=5+14x
齐次性:D(af(x))=aD(f(x)=a(2+6x)
故:D为线性变换
同时,D的多项式组合
a
D
+
b
D
2
+
c
D
n
aD+bD²+cD^n
aD+bD2+cDn也是线性变换
7.4.2微分算子D的线性
对于多项式函数:f(x)=1+2x+3x²
对应的图像:
图像上通过D矩阵把投影到了1~x平面上
此时D也是一个线性变换
7.4.3线性微分方程
设:L为D的多项式组合,L 为线性变换
L=
定义线性微分方程: L(y)=f(x)
当f(x)=0时,为齐次线性微分方程: L(y)=0
根据特征值和特征向量的定义,当L=D有:
同理:对于L=D²-2D-8
7.5用矩阵求解二阶齐次线性微分方程
二阶齐次线性微分方程:
定义向量:
…
现在讨论的产生
设
对于一个一阶齐次线性微分方程:y’+ky=0
定义:S=D+kI ,D为微分算子——求导,I为单位算子——不变
则: S(y)=(D+kI)(y)=y’+ky
二阶微分方程可以看做零个一阶算子S相乘的结果,
s
(
2
)
=
s
×
s
s^{(2)}=s×s
s(2)=s×s
即:
7.重积分
7.1二重积分定义
曲顶柱体如下图所示
曲顶柱体的俯视图如下
dσ条的体积示意图:
dσ片的体积:
固定x,体积为: ∫f(x,y)dσ
重新在x维度上积分:
Note:其中z=f(x,y)是曲顶的坐标,同时也是曲顶柱体的高;
Note:曲顶柱体是曲顶在x-y平面上的投影
7.2二重积分性质
1.普通对称性 D区域关于y轴对称.
Note:底面积相同,高相等或相反(将x,y与-x,y代入z=f(x,y)内,相等即两倍,相反即为)
2.D区域关于x轴对称
例子:
正方形为区域D,|x|≤1,|y|≤1
分为四个区域Dk(k=1.2.3.4)
问:中Ik的最大值为?
对于D1, y始终为正,则yexs始终为正,则I1始终为正
对于D2,为0
对于D3,y始终为负
对于D4,为0
2.轮换对称性
引子:
(1)
是否相等?依然相等
积分值与用何字母无关
x,y只是一个衡量符号(仅仅改变了x、y轴的位置)
(2)
巧合:区域D依然不变,即关于y=x对称
定义:若将D中的x、y对调,发现D不变
则
例子应用:D={(x,y)|x²+y²≤1,x≥0,y≥0}
算:I=
轮换I=
故2I=∬(a+b)dxdy
7.二重积分计算
7.4二重积分应用
极值
判别法:
一. 一阶导数为0,二阶导数大于零为极小。
一阶导数为0,二阶导数小于零为极大。
二. 存在δ>0
当x∈(x0-δ,x0)时,有f’(x)>0,当x∈(x0,x0 +δ)时,有f’(x)<0,则x=x0为f(x)的极大值点。
当x∈(x0-δ,x0)时,有f’(x)<0,当x∈(x0,x0 +δ)时,有f’(x)>0,则x=x0为f(x)的极小值点。
一阶导由正变负为极大,一阶导由为负变正为极小
4.极限存在定理
两个重要极限
5.极限计算
常用的等价无穷小
向量
内积
内积:先模投影,再模相乘,(x,y)=|y||x|cos<x,y>.
期望
泰勒展开
10 傅里叶变换
10.3 正弦波
运动形式1:一点以时间为横轴,位移为纵轴的往复运动。
可以说,正弦波就是圆周上一点在滚动时在直线上的投影
圆周运动轨迹大小:半径或幅度
圆周运动快慢: 角速度或频率
运动的起始位置: 初始相位角
两信号起始位置角度差:相位差
公式描述: y=Asin(wt+φ)=Asin(θ+φ)
- 其中A为幅值,w为角速度或角频率,φ为初始相位角
10.4欧拉公式
该节所有内容鸣谢花生油大大的文章傅里叶分析之掐死教程
(1)作用:将正弦波统一为了简单的指数形式
将指数函数的定义域扩大到了复数域,建立了三角函数和指数函数的关系,被誉为“数学中的天桥”
e^t是什么样
在指数上加上i之后
(1)图像:实部
c
o
s
x
,
虚部
i
s
i
n
x
,
故指数
e
i
x
cosx,虚部isinx,故指数e^{ix}
cosx,虚部isinx,故指数eix的图像为“海螺”,所在的空间为频域。
欧拉公式所描述的,是一个随时间变化的,在复平面上做圆周运动的点,随时间变为了螺旋线,其左侧投影为余弦函数,右侧投影为正弦函数。
复频域以jw为横轴,频域以w为横轴,时域以t为横轴
- 复频域海螺投影到实数空间是频域的正弦波
- 是故,正弦波的叠加即螺旋线的叠加
e
i
t
e^{it}
eit可以理解为一条逆时针旋转的螺旋线,那么
e
−
i
t
e^{-it}
e−it则可以理解为一条顺时针旋转的螺旋线。而cos(t)则是这两条旋转方向不同的螺旋线叠加的一半,因为这两条螺旋线的虚数部分相互抵消掉了!
这个图形在时域是什么样子
e
i
θ
e^{i\theta}
eiθ与
c
o
s
θ
+
i
s
i
n
θ
cosθ+isinθ
cosθ+isinθ在复平面上都是圆周运动
当1乘以-1的时候,就变成了绿色的线段,或者说线段在数轴上围绕原点旋转了180度。
乘-1其实就是乘了两次 i使线段旋转了180度,那么乘一次 i 旋转了90度。
更重要的意义在于复数运算保留了二维信息。
10.5 i 的思考
虚数i的定义为
i
=
−
1
i = \sqrt{-1}
i=−1.
事实上,i没有值,i是人工设立的概念,在现实中没有对应物体,但是我们不能认为它不在。
- 自然数扩张到整数增加了负数从而有了“减少”
- 整数扩张到有理数增加了分数从而有了“分割”(整数与整数的比)
- 有理数是无限循环小数,任何两个有理数的平均值之还有有理数,即任意两个有理数之间都不能相邻,那么它们之间的数是?
有理数扩张到实数增加了无理数从而有了“单位正方形的对角线长度 2 \sqrt{2} 2”
2
\sqrt{2}
2是第一个发现的无理数,无理数是无限不循环小数
至此貌似数轴上就没有坑了,故实数是连续的。
实数扩张到复数增加了虚数
-1就是乘了两次i使线段旋转了180°
其中i的物理意义是旋转,一个i逆时针旋转90°
当 x = π 时, e i π + 1 = 0 x=π时,e^{iπ}+1=0 x=π时,eiπ+1=0
复平面上乘法的几何意义
由于泰勒公式的收敛性,我们认为虚数是真实存在的
如果实数是三维空间,复数就是第四维空间
泰勒公式就是生存在思维空间里的动物
实数范围内泰勒公式的收敛域是奇怪的,
实际上,这只不过是四维在三维空间的投影
现在,让我们发散一下思维:
假如你是二维生物,理论上你的厚度为无穷小,你的世界中所有的物体都没有厚度,你对世界的认知缺少第三维,故你的世界没有h的存在,那么h是什么?
或者说如何将一个二维生物变为三维?
- 理论上二维生物在三维中是无法真实存在的。
- i 在三维空间中的意义与h在二维空间的意义相同。
- 四维空间不止一个,而是有无数个,由任意四个维度组成。
- 就像一个一维生物,只有长m,其宽n与高h在理论上都是无穷小;无论是给定其宽n还是高h它都会变成二维生物。
这里假设一个虚空的维度存在:
- 什么叫虚空?虚空与实空相对,这边有一个苹果,那边就有一个负苹果。
- 负苹果在虚空中真实存在。当负苹果与正苹果相遇将会湮灭为零。
- 而就算负苹果在实空中不存在,我们依旧拿它来使用一样。
- 什么叫-1?就是在实际空间的一个位置上不仅没有一个苹果,而且由苹果反物质构成,
- 为什么我们在实空中认为 i i i不存在?,因为负负得正,但那仅仅是我们的维度来说的,但是负负真的得正吗?
- 这里假设在虚空中负负得负是普遍的。
- 那么如果说负负得负存在,我们用一个符号表示 i i i ,定义 i = − 1 i = \sqrt{-1} i=−1
- 那么此时 2 i ∗ 2 i = 4 i 2 = − 4 2i*2i = 4i^2 =-4 2i∗2i=4i2=−4,也就是说虚空中的法则就是以 i i i为基础。
- i就是虚空中的实体1
此时,我们的i是不是好理解了?它的本质就是为我们定义了一个负负得负的虚空维度,i就是标识这个虚空的法则。真正定义了我们所熟悉的-1。
这里继续发散一下
假如一个三维生物跑到二维无宽空间,你就有了看不见的大手,你就变成了一种有神力的生物。
- 你可以在二维生物称之为宽维的空间内游走。
如果四维含时间生物跑到了我们的三维空间,它是一个有时间长度多生物,如果它的时间长度大于我们的一百年的话,它一个生物就会同时出现在所有时间长度中,它还可以在时间维度中移动,达到所谓的时间倒流。
- 看电视就是三维看二维里的三维
- 一个人看到的是二维,大脑中合成的是三维
对于四维生物,看到的是三维,大脑中合成的是四维,所以它会在一瞬间同时看到我们的一生
10.6 欧拉证明
10.7 频域和
以下是关于复频域以及它与频域区别的介绍:
复频域
复频域是在拉普拉斯变换的基础上引入的概念,是一种数学分析工具和变换域表示方法。在复频域中,自变量是复频率 s s s, s = σ + j ω s=\sigma + j\omega s=σ+jω,其中 σ \sigma σ是实部, j = − 1 j=\sqrt{-1} j=−1, ω \omega ω是虚部。它将时域中的信号和系统通过拉普拉斯变换转换到复频域中进行分析和处理。在复频域中,可以方便地对线性时不变系统进行建模、分析稳定性、求解系统的响应等。例如,对于一个线性电路系统,通过拉普拉斯变换将电路的微分方程转换为复频域中的代数方程,从而更易于求解和分析电路的性能。
复频域和频域的区别
- 变量性质
- 频域:频域中的变量是频率 ω \omega ω,它是一个实数,表示信号中不同频率成分的分布情况,只涉及到信号的频率信息,用于分析信号在不同频率下的幅度和相位特性,如通过傅里叶变换得到的频谱就是在频域中描述信号的。
- 复频域:复频域中的变量 s = σ + j ω s=\sigma + j\omega s=σ+jω是复数,不仅包含了频率 ω \omega ω信息,还引入了实部 σ \sigma σ。实部 σ \sigma σ与信号的衰减或增长特性相关,使得复频域能够更全面地描述信号和系统的特性,尤其是在处理含有动态元件(如电感、电容)的系统以及分析系统稳定性等问题时更为有效。
- 变换方法
- 频域:主要通过傅里叶变换将时域信号转换为频域信号,傅里叶变换的本质是将时域信号分解为不同频率的正弦和余弦信号的叠加,适用于分析周期信号和满足狄利克雷条件的非周期信号的频率成分。
- 复频域:通过拉普拉斯变换将时域信号转换为复频域信号,拉普拉斯变换在傅里叶变换的基础上,引入了一个衰减因子 e − σ t e^{-\sigma t} e−σt,使得它能够处理一些不满足傅里叶变换条件的信号,如指数增长或衰减的信号等,适用范围更广。
- 应用场景
- 频域:常用于信号处理领域,如音频处理中分析声音信号的频率成分,图像信号处理中进行滤波等操作,还用于通信系统中分析信号的频谱特性、调制解调等,关注的是信号在不同频率上的能量分布和相位关系。
- 复频域:在控制工程中用于分析和设计控制系统,通过复频域分析可以判断系统的稳定性、计算系统的传递函数等,在电路分析中用于求解动态电路的响应,能够更方便地处理含有储能元件的电路。
误差
均方根误差
标准差
正态分布
高斯白噪声指的是概率密度函数服从正态分布的噪声,高斯分布。记为N(μ,σ²),μ为数学期望,σ²为方差,σ²=1时称为标准正态分布。
高斯分布的一维概率密度:
分布图
矩阵论
行列式
对调矩阵的两行不变;——行列式变负
矩阵的某行乘以非零常数k不变;——行列式行列提取
矩阵某行的f(λ)倍加到另一行; ——行列式子相同
逆矩阵
伴随矩阵
adj(A)
余子式:在行列式|A|中去掉第i行和第j列、余下元素记为Mij,称Mij为元素aij的余子式。
代数余子式:
A
i
j
=
(
−
1
)
i
+
j
M
i
j
A_{ij}=(-1)^{i+j}M_{ij}
Aij=(−1)i+jMij称元素
a
i
j
a_{ij}
aij的代数余子式。
记伴随矩阵:
共轭矩阵
实部相等,虚部互为相反数。
正交矩阵
设Q为n阶矩阵,若QTQ=E,称Q为正交矩阵;正交矩阵性质:若Q为正交矩阵,QT=Q-1,Q的转置等于Q的逆
实对称矩阵
A的转置等于A
a. A的特征值都是实数
b. 不同特征值对应的特征向量正交
c. 一定可以相似对角化
Hermit矩阵:A^H=A,A为n*n的矩阵
极坐标系
极坐标系是一种用于确定平面上点的位置的二维坐标系统,以下从其基本构成、点的表示、与直角坐标系的关系等方面进行描述:
基本构成
- 极点:极坐标系的中心称为极点,通常用 O O O表示,它是确定平面上点的位置的基准点。
- 极轴:从极点引出的一条射线,通常取水平向右的方向为极轴的正方向,极轴相当于直角坐标系中的 x x x轴正半轴,它为测量角度和距离提供了起始参考。
- 角度:在极坐标系中,平面内任意一点 P P P与极点 O O O的连线 O P OP OP称为极径,记为 ρ \rho ρ。从极轴正半轴开始,按逆时针方向旋转到 O P OP OP所形成的角 ∠ x O P \angle xOP ∠xOP称为极角,记为 θ \theta θ。极角 θ \theta θ的取值范围通常是 [ 0 , 2 π ) [0,2\pi) [0,2π)或 ( − π , π ] (-\pi,\pi] (−π,π],具体取值范围可根据具体问题和应用场景确定。
点的表示
在极坐标系中,一个点 P P P由极径 ρ \rho ρ和极角 θ \theta θ唯一确定,记为 P ( ρ , θ ) P(\rho,\theta) P(ρ,θ)。例如,点 A ( 2 , π 3 ) A(2,\frac{\pi}{3}) A(2,3π)表示该点到极点的距离为 2 2 2,极角为 π 3 \frac{\pi}{3} 3π。当 ρ = 0 \rho = 0 ρ=0时,无论 θ \theta θ取何值,都表示极点 O O O。当 ρ < 0 \rho\lt0 ρ<0时,点 P ( ρ , θ ) P(\rho,\theta) P(ρ,θ)与点 ( − ρ , θ + π ) (-\rho,\theta +\pi) (−ρ,θ+π)表示同一个点,即此时点位于极径反向延长线上,距离极点 ∣ ρ ∣ \vert\rho\vert ∣ρ∣。
坐标变换
- 极坐标转直角坐标:若点 P P P在极坐标系中的坐标为 ( ρ , θ ) (\rho,\theta) (ρ,θ),在直角坐标系中的坐标为 ( x , y ) (x,y) (x,y),则它们之间的转换关系为 x = ρ cos θ x = \rho\cos\theta x=ρcosθ, y = ρ sin θ y=\rho\sin\theta y=ρsinθ。
- 直角坐标转极坐标: ρ = x 2 + y 2 \rho=\sqrt{x^{2}+y^{2}} ρ=x2+y2, tan θ = y x ( x ≠ 0 ) \tan\theta=\frac{y}{x}(x\neq0) tanθ=xy(x=0)。
应用领域
- 数学领域:在解决一些复杂的曲线方程、积分运算等问题时,极坐标系能将问题简化。例如,阿基米德螺线 r = a θ r = a\theta r=aθ( a a a为常数),在极坐标系下其方程形式简洁,若用直角坐标表示则会很复杂。
- 物理学领域:在描述圆周运动、电场、磁场等具有中心对称性的物理现象时,极坐标系被广泛应用。比如,在分析电子绕原子核做圆周运动的问题中,用极坐标系可以方便地描述电子的位置和运动状态。
- 工程学领域:在机械设计、机器人路径规划等方面,极坐标系有助于确定物体的位置和运动轨迹。例如,在机器人的运动控制中,可利用极坐标来规划机器人绕某一固定点的运动路径。
复数的极坐标表示
- 表示形式:在复平面内,每一个复数 z = x + i y z = x+iy z=x+iy 都对应着平面上的一个点 ( x , y ) (x,y) (x,y)。借助极坐标系,可将其表示为极坐标形式 z = r ( cos θ + i sin θ ) z = r(\cos\theta + i\sin\theta) z=r(cosθ+isinθ),其中 r = x 2 + y 2 r=\sqrt{x^{2}+y^{2}} r=x2+y2 是复数 z z z 的模,代表复平面上点 z z z 到原点的距离; θ \theta θ 是复数 z z z 的辐角,即极轴(正实轴)按逆时针方向旋转到与复数 z z z 对应的向量所成的角度。例如,对于复数 z = 1 + i z = 1 + i z=1+i,其模 r = 1 2 + 1 2 = 2 r=\sqrt{1^{2}+1^{2}}=\sqrt{2} r=12+12=2,辐角 θ = π 4 \theta=\frac{\pi}{4} θ=4π,则 z = 2 ( cos π 4 + i sin π 4 ) z=\sqrt{2}(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}) z=2(cos4π+isin4π)。
- 与欧拉公式结合:根据欧拉公式 e i θ = cos θ + i sin θ e^{i\theta}=\cos\theta + i\sin\theta eiθ=cosθ+isinθ,复数的极坐标形式可进一步写为 z = r e i θ z = re^{i\theta} z=reiθ。这种表示形式简洁明了,在处理复数的乘法、除法、幂运算等方面具有很大优势。例如,两个复数 z 1 = r 1 e i θ 1 z_1 = r_1e^{i\theta_1} z1=r1eiθ1 和 z 2 = r 2 e i θ 2 z_2 = r_2e^{i\theta_2} z2=r2eiθ2 相乘, z 1 z 2 = r 1 r 2 e i ( θ 1 + θ 2 ) z_1z_2=r_1r_2e^{i(\theta_1 + \theta_2)} z1z2=r1r2ei(θ1+θ2),即模相乘,辐角相加。
复变函数的极坐标表示
- 函数形式:对于复变函数 w = f ( z ) w = f(z) w=f(z),当 z z z 用极坐标形式 z = r e i θ z = re^{i\theta} z=reiθ 表示时,复变函数也可以相应地表示为极坐标形式 w = f ( r e i θ ) w = f(re^{i\theta}) w=f(reiθ)。例如,对于幂函数 w = z n w = z^n w=zn,将 z = r e i θ z = re^{i\theta} z=reiθ 代入可得 w = ( r e i θ ) n = r n e i n θ w=(re^{i\theta})^n=r^ne^{in\theta} w=(reiθ)n=rneinθ。
- 研究函数性质:在极坐标系下研究复变函数的性质更加直观和方便。比如,研究函数的解析性(可导性)时,利用极坐标形式可以将柯西 - 黎曼方程转化为极坐标形式 ∂ u ∂ r = 1 r ∂ v ∂ θ \frac{\partial u}{\partial r}=\frac{1}{r}\frac{\partial v}{\partial \theta} ∂r∂u=r1∂θ∂v 和 ∂ v ∂ r = − 1 r ∂ u ∂ θ \frac{\partial v}{\partial r}=-\frac{1}{r}\frac{\partial u}{\partial \theta} ∂r∂v=−r1∂θ∂u(其中 u u u 和 v v v 分别是复变函数 w = u + i v w = u+iv w=u+iv 的实部和虚部),通过这些方程可以更方便地判断函数在某些区域内是否解析。
复变函数积分与极坐标系
- 积分路径表示:在复变函数积分中,积分路径可以用极坐标来表示。例如,对于一个以原点为圆心,半径为 R R R 的圆周 C C C,可以用参数方程 z = R e i θ z = Re^{i\theta} z=Reiθ( θ \theta θ 从 0 0 0 到 2 π 2\pi 2π)来表示。在计算沿该圆周的积分 ∮ C f ( z ) d z \oint_{C}f(z)dz ∮Cf(z)dz 时,将 z = R e i θ z = Re^{i\theta} z=Reiθ 代入, d z = i R e i θ d θ dz = iRe^{i\theta}d\theta dz=iReiθdθ,则积分可转化为关于 θ \theta θ 的定积分 ∫ 0 2 π f ( R e i θ ) i R e i θ d θ \int_{0}^{2\pi}f(Re^{i\theta})iRe^{i\theta}d\theta ∫02πf(Reiθ)iReiθdθ。
- 简化积分计算:利用极坐标系可以简化某些复变函数积分的计算。例如,对于一些具有旋转对称性的函数,采用极坐标表示可以使积分区域和被积函数的形式变得简单,从而更容易计算积分的值。
应用领域中的联系
- 流体力学:在流体力学中,复变函数常被用于描述二维无旋、不可压缩流体的流动。极坐标系可以很好地描述具有圆形边界或旋转对称的流动问题。例如,在研究圆形障碍物周围的流体流动时,使用极坐标系和复变函数相结合的方法,可以方便地得到流体的速度分布和压力分布。
- 电磁学:在电磁学中,复变函数可用于求解二维静电场和磁场问题。对于具有圆形导体或圆形介质边界的问题,极坐标系下的复变函数方法可以有效地简化问题的求解过程,得到电场和磁场的分布规律。
复变函数基础
你想问的应该是复数的基本形式,它主要有代数形式、三角形式、指数形式和极坐标形式,下面为你详细介绍:
代数形式
- 表示方法:复数最常见的表示形式是代数形式,即 z = a + b i z = a+bi z=a+bi,其中 a , b ∈ R a,b\in R a,b∈R, a a a被称作复数 z z z的实部,记作 R e ( z ) Re(z) Re(z); b b b被称作复数 z z z的虚部,记作 I m ( z ) Im(z) Im(z); i i i为虚数单位,满足 i 2 = − 1 i^{2}=-1 i2=−1。例如 z = 3 + 2 i z = 3 + 2i z=3+2i,这里实部 a = 3 a = 3 a=3,虚部 b = 2 b = 2 b=2。
- 运算特点:在进行复数的加、减、乘、除等基本运算时,代数形式非常直观。比如两个复数 z 1 = a 1 + b 1 i z_1=a_1 + b_1i z1=a1+b1i, z 2 = a 2 + b 2 i z_2=a_2 + b_2i z2=a2+b2i相加, z 1 + z 2 = ( a 1 + a 2 ) + ( b 1 + b 2 ) i z_1+z_2=(a_1 + a_2)+(b_1 + b_2)i z1+z2=(a1+a2)+(b1+b2)i。
三角形式
- 表示方法:复数的三角形式为 z = r ( cos θ + i sin θ ) z=r(\cos\theta+i\sin\theta) z=r(cosθ+isinθ),其中 r = a 2 + b 2 r = \sqrt{a^{2}+b^{2}} r=a2+b2是复数的模(即复数在复平面上对应的点到原点的距离); θ \theta θ是复数的辐角,满足 tan θ = b a ( a ≠ 0 ) \tan\theta=\frac{b}{a}(a\neq0) tanθ=ab(a=0),辐角 θ \theta θ的取值通常在 [ 0 , 2 π ) [0,2\pi) [0,2π)或 ( − π , π ] (-\pi,\pi] (−π,π]。例如对于复数 z = 1 + i z = 1 + i z=1+i, r = 1 2 + 1 2 = 2 r=\sqrt{1^{2}+1^{2}}=\sqrt{2} r=12+12=2, tan θ = 1 \tan\theta = 1 tanθ=1,在 [ 0 , 2 π ) [0,2\pi) [0,2π)内 θ = π 4 \theta=\frac{\pi}{4} θ=4π,则其三角形式为 z = 2 ( cos π 4 + i sin π 4 ) z=\sqrt{2}(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}) z=2(cos4π+isin4π)。
- 运算优势:在进行复数的乘法、除法和乘方运算时,三角形式具有明显优势。两个复数 z 1 = r 1 ( cos θ 1 + i sin θ 1 ) z_1=r_1(\cos\theta_1+i\sin\theta_1) z1=r1(cosθ1+isinθ1), z 2 = r 2 ( cos θ 2 + i sin θ 2 ) z_2=r_2(\cos\theta_2+i\sin\theta_2) z2=r2(cosθ2+isinθ2)相乘, z 1 z 2 = r 1 r 2 [ cos ( θ 1 + θ 2 ) + i sin ( θ 1 + θ 2 ) ] z_1z_2=r_1r_2[\cos(\theta_1+\theta_2)+i\sin(\theta_1+\theta_2)] z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)]。
指数形式
- 表示方法:根据欧拉公式 e i θ = cos θ + i sin θ e^{i\theta}=\cos\theta+i\sin\theta eiθ=cosθ+isinθ,复数的三角形式可转化为指数形式 z = r e i θ z = re^{i\theta} z=reiθ,其中 r r r为模, θ \theta θ为辐角。例如上述 z = 1 + i = 2 e i π 4 z = 1 + i=\sqrt{2}e^{i\frac{\pi}{4}} z=1+i=2ei4π。
- 运算优势:指数形式在处理复数的幂和开方运算时极为方便。对于复数 z = r e i θ z = re^{i\theta} z=reiθ,其 n n n次方 z n = r n e i n θ z^n=r^ne^{in\theta} zn=rneinθ。
极坐标形式
- 表示方法:极坐标形式本质上和指数形式、三角形式紧密相关,它是将复数用极坐标 ( r , θ ) (r,\theta) (r,θ)来表示,其中 r r r是复数的模, θ \theta θ是辐角。在复平面上,它强调了复数与极坐标系的联系,与三角形式和指数形式相互对应。比如复数 z z z用极坐标表示为 ( r , θ ) (r,\theta) (r,θ),用三角形式就是 r ( cos θ + i sin θ ) r(\cos\theta + i\sin\theta) r(cosθ+isinθ),用指数形式就是 r e i θ re^{i\theta} reiθ 。
- 几何意义:极坐标形式的几何意义明显, r r r表示复平面上点到原点的距离, θ \theta θ表示从正实轴逆时针旋转到该点所对应的向量的角度,能直观地反映复数在复平面上的位置和方向。
复数乘除
当复数用极坐标形式(也就是指数形式 z = r e i θ z = re^{i\theta} z=reiθ 或者三角形式 z = r ( cos θ + i sin θ ) z = r(\cos\theta + i\sin\theta) z=r(cosθ+isinθ) )表示时,它们的乘除运算法则有简洁的表达形式,以下为你详细介绍:
乘法法则
基于指数形式
设两个复数分别为 z 1 = r 1 e i θ 1 z_1 = r_1e^{i\theta_1} z1=r1eiθ1 和 z 2 = r 2 e i θ 2 z_2 = r_2e^{i\theta_2} z2=r2eiθ2,其中 r 1 r_1 r1、 r 2 r_2 r2 分别是两个复数的模, θ 1 \theta_1 θ1、 θ 2 \theta_2 θ2 分别是它们的辐角。
根据指数运算法则 a m × a n = a m + n a^m\times a^n=a^{m + n} am×an=am+n,可得 z 1 z 2 = r 1 e i θ 1 × r 2 e i θ 2 = ( r 1 r 2 ) e i ( θ 1 + θ 2 ) z_1z_2=r_1e^{i\theta_1}\times r_2e^{i\theta_2}=(r_1r_2)e^{i(\theta_1+\theta_2)} z1z2=r1eiθ1×r2eiθ2=(r1r2)ei(θ1+θ2)。
这表明,两个复数相乘时,积的模等于各复数模的乘积,积的辐角等于各复数辐角的和。
基于三角形式
设 z 1 = r 1 ( cos θ 1 + i sin θ 1 ) z_1 = r_1(\cos\theta_1 + i\sin\theta_1) z1=r1(cosθ1+isinθ1), z 2 = r 2 ( cos θ 2 + i sin θ 2 ) z_2 = r_2(\cos\theta_2 + i\sin\theta_2) z2=r2(cosθ2+isinθ2),则:
z 1 z 2 = r 1 ( cos θ 1 + i sin θ 1 ) × r 2 ( cos θ 2 + i sin θ 2 ) = r 1 r 2 [ ( cos θ 1 cos θ 2 − sin θ 1 sin θ 2 ) + i ( sin θ 1 cos θ 2 + cos θ 1 sin θ 2 ) ] \begin{align*} z_1z_2&=r_1(\cos\theta_1 + i\sin\theta_1)\times r_2(\cos\theta_2 + i\sin\theta_2)\\ &=r_1r_2[(\cos\theta_1\cos\theta_2-\sin\theta_1\sin\theta_2)+i(\sin\theta_1\cos\theta_2+\cos\theta_1\sin\theta_2)] \end{align*} z1z2=r1(cosθ1+isinθ1)×r2(cosθ2+isinθ2)=r1r2[(cosθ1cosθ2−sinθ1sinθ2)+i(sinθ1cosθ2+cosθ1sinθ2)]
根据三角函数的两角和公式 cos ( A + B ) = cos A cos B − sin A sin B \cos(A + B)=\cos A\cos B-\sin A\sin B cos(A+B)=cosAcosB−sinAsinB, sin ( A + B ) = sin A cos B + cos A sin B \sin(A + B)=\sin A\cos B+\cos A\sin B sin(A+B)=sinAcosB+cosAsinB,上式可化简为 z 1 z 2 = r 1 r 2 [ cos ( θ 1 + θ 2 ) + i sin ( θ 1 + θ 2 ) ] z_1z_2 = r_1r_2[\cos(\theta_1+\theta_2)+i\sin(\theta_1+\theta_2)] z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)],与指数形式推导结果一致。
示例:已知 z 1 = 2 ( cos π 3 + i sin π 3 ) z_1 = 2(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}) z1=2(cos3π+isin3π), z 2 = 3 ( cos π 6 + i sin π 6 ) z_2 = 3(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}) z2=3(cos6π+isin6π),则 z 1 z 2 = ( 2 × 3 ) [ cos ( π 3 + π 6 ) + i sin ( π 3 + π 6 ) ] = 6 ( cos π 2 + i sin π 2 ) = 6 i z_1z_2=(2\times3)[\cos(\frac{\pi}{3}+\frac{\pi}{6})+i\sin(\frac{\pi}{3}+\frac{\pi}{6})]=6(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}) = 6i z1z2=(2×3)[cos(3π+6π)+isin(3π+6π)]=6(cos2π+isin2π)=6i。
除法法则
基于指数形式
设 z 1 = r 1 e i θ 1 z_1 = r_1e^{i\theta_1} z1=r1eiθ1, z 2 = r 2 e i θ 2 z_2 = r_2e^{i\theta_2} z2=r2eiθ2( r 2 ≠ 0 r_2\neq0 r2=0),根据指数运算法则 a m a n = a m − n \frac{a^m}{a^n}=a^{m - n} anam=am−n,可得:
z 1 z 2 = r 1 e i θ 1 r 2 e i θ 2 = r 1 r 2 e i ( θ 1 − θ 2 ) \frac{z_1}{z_2}=\frac{r_1e^{i\theta_1}}{r_2e^{i\theta_2}}=\frac{r_1}{r_2}e^{i(\theta_1-\theta_2)} z2z1=r2eiθ2r1eiθ1=r2r1ei(θ1−θ2)
这说明,两个复数相除时,商的模等于被除数的模除以除数的模,商的辐角等于被除数的辐角减去除数的辐角。
基于三角形式
设
z
1
=
r
1
(
cos
θ
1
+
i
sin
θ
1
)
z_1 = r_1(\cos\theta_1 + i\sin\theta_1)
z1=r1(cosθ1+isinθ1),
z
2
=
r
2
(
cos
θ
2
+
i
sin
θ
2
)
z_2 = r_2(\cos\theta_2 + i\sin\theta_2)
z2=r2(cosθ2+isinθ2)(
r
2
≠
0
r_2\neq0
r2=0),则:
z
1
z
2
=
r
1
(
cos
θ
1
+
i
sin
θ
1
)
r
2
(
cos
θ
2
+
i
sin
θ
2
)
=
r
1
r
2
×
(
cos
θ
1
+
i
sin
θ
1
)
(
cos
θ
2
−
i
sin
θ
2
)
(
cos
θ
2
+
i
sin
θ
2
)
(
cos
θ
2
−
i
sin
θ
2
)
\begin{align*} \frac{z_1}{z_2}&=\frac{r_1(\cos\theta_1 + i\sin\theta_1)}{r_2(\cos\theta_2 + i\sin\theta_2)}\\ &=\frac{r_1}{r_2}\times\frac{(\cos\theta_1 + i\sin\theta_1)(\cos\theta_2 - i\sin\theta_2)}{(\cos\theta_2 + i\sin\theta_2)(\cos\theta_2 - i\sin\theta_2)}\\ \end{align*}
z2z1=r2(cosθ2+isinθ2)r1(cosθ1+isinθ1)=r2r1×(cosθ2+isinθ2)(cosθ2−isinθ2)(cosθ1+isinθ1)(cosθ2−isinθ2)
分母 ( cos θ 2 + i sin θ 2 ) ( cos θ 2 − i sin θ 2 ) = cos 2 θ 2 + sin 2 θ 2 = 1 (\cos\theta_2 + i\sin\theta_2)(\cos\theta_2 - i\sin\theta_2)=\cos^{2}\theta_2+\sin^{2}\theta_2 = 1 (cosθ2+isinθ2)(cosθ2−isinθ2)=cos2θ2+sin2θ2=1,分子展开并利用三角函数两角差公式化简可得:
z 1 z 2 = r 1 r 2 [ ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 ) + i ( sin θ 1 cos θ 2 − cos θ 1 sin θ 2 ) ] = r 1 r 2 [ cos ( θ 1 − θ 2 ) + i sin ( θ 1 − θ 2 ) ] \begin{align*} \frac{z_1}{z_2}&=\frac{r_1}{r_2}[(\cos\theta_1\cos\theta_2+\sin\theta_1\sin\theta_2)+i(\sin\theta_1\cos\theta_2-\cos\theta_1\sin\theta_2)]\\ &=\frac{r_1}{r_2}[\cos(\theta_1 - \theta_2)+i\sin(\theta_1 - \theta_2)] \end{align*} z2z1=r2r1[(cosθ1cosθ2+sinθ1sinθ2)+i(sinθ1cosθ2−cosθ1sinθ2)]=r2r1[cos(θ1−θ2)+isin(θ1−θ2)]
示例:已知
z
1
=
4
(
cos
2
π
3
+
i
sin
2
π
3
)
z_1 = 4(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3})
z1=4(cos32π+isin32π),
z
2
=
2
(
cos
π
6
+
i
sin
π
6
)
z_2 = 2(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6})
z2=2(cos6π+isin6π),则
z
1
z
2
=
4
2
[
cos
(
2
π
3
−
π
6
)
+
i
sin
(
2
π
3
−
π
6
)
]
=
2
(
cos
π
2
+
i
sin
π
2
)
=
2
i
\frac{z_1}{z_2}=\frac{4}{2}[\cos(\frac{2\pi}{3}-\frac{\pi}{6})+i\sin(\frac{2\pi}{3}-\frac{\pi}{6})]=2(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}) = 2i
z2z1=24[cos(32π−6π)+isin(32π−6π)]=2(cos2π+isin2π)=2i。
Arg 复数的辐角
θ是F的辐角,记为θ=arg(F),F=r(cosθ+jsinθ)
角度
-1
要理解为什么 e i π = − 1 e^{i\pi}=-1 eiπ=−1,关键在于借助欧拉公式,以下为你详细阐述推导过程:
欧拉公式
欧拉公式为 e i θ = cos θ + i sin θ e^{i\theta}=\cos\theta + i\sin\theta eiθ=cosθ+isinθ,其中 e e e 是自然常数(约等于 2.71828 2.71828 2.71828), i i i 是虚数单位(满足 i 2 = − 1 i^{2}=-1 i2=−1), θ \theta θ 是实数。该公式建立了指数函数与三角函数之间的联系,在复变函数领域有着极其重要的地位。
计算 e i π e^{i\pi} eiπ
在欧拉公式
e
i
θ
=
cos
θ
+
i
sin
θ
e^{i\theta}=\cos\theta + i\sin\theta
eiθ=cosθ+isinθ 中,令
θ
=
π
\theta=\pi
θ=π,则有:
e
i
π
=
cos
π
+
i
sin
π
e^{i\pi}=\cos\pi + i\sin\pi
eiπ=cosπ+isinπ
根据三角函数的特殊值可知,
cos
π
=
−
1
\cos\pi=-1
cosπ=−1,
sin
π
=
0
\sin\pi = 0
sinπ=0,所以:
e
i
π
=
−
1
+
i
×
0
=
−
1
e^{i\pi}=-1+ i\times0=-1
eiπ=−1+i×0=−1
这个等式
e
i
π
+
1
=
0
e^{i\pi}+1 = 0
eiπ+1=0 被称为欧拉恒等式,它将数学中最重要的五个常数
e
e
e(自然常数)、
i
i
i(虚数单位)、
π
\pi
π(圆周率)、
0
0
0 和
1
1
1 联系在了一起,被认为是数学中最优美的公式之一。