常数1的傅里叶变换详解过程

昨日好友突然问我一个关于信号相关的问题—— 常数 1 1 1(或者说时域信号 x ( t ) = 1 x(t)= 1 xt=1)用傅里叶变换后在频域中的表示为 δ ( t ) \delta(t) δ(t) 中的 2 π 2\pi 2π 从何而来(如下) 。问题不难,这是一个关于信号与系统中的最基础的问题,但是这个问题在网络上面都没有正确且详细的证明。

δ ( t ) ⟷ 1 \delta(t) \longleftrightarrow 1 δ(t)1
1 ⟷ 2 π δ ( ω ) 1 \longleftrightarrow 2\pi\delta (\omega) 12πδ(ω)

首先来看一下傅里叶变换的正反两个公式
X ( ω ) = ∫ − ∞ + ∞ x ( t ) e − j ω t   d t X(\omega) = \int_{-\infty}^{+\infty} {x(t)e^{-j\omega t}} \,{\rm d}t X(ω)=+x(t)ejωtdt
x ( t ) = 1 2 π ∫ − ∞ + ∞ X ( ω ) e j ω t   d ω x(t) = \frac{1}{2\pi}\int_{-\infty}^{+\infty} {X(\omega) e^{j\omega t}} \,{\rm d}\omega x(t)=2π1+X(ω)ejωtdω

δ ( t ) \delta(t) δ(t) 带入正变换公式,
X ( ω ) = ∫ − ∞ + ∞ δ ( t ) e − j ω t   d t = 1 X(\omega) = \int_{-\infty}^{+\infty} {\delta(t)e^{-j\omega t}} \,{\rm d}t=1 X(ω)=+δ(t)ejωtdt=1
由delta函数的特性可以得到 δ ( t ) \delta(t) δ(t)只有在 t = 0 t=0 t=0的时候才有取值,故令 t = 0 t=0 t=0,可得傅里叶变换结果为1.

再看其反变换

x ( t ) = 1 2 π ∫ − ∞ + ∞ e j ω t   d ω x(t) = \frac{1}{2\pi}\int_{-\infty}^{+\infty} {e^{j\omega t}} \,{\rm d}\omega x(t)=2π1+ejωtdω
该式子并不能直接求解并不能完全像以前一样进行微分、积分运算(为广义积分)。(由于正负无穷的上下限)
又因为同样的原因,从时域上的1到频域进行傅里叶变换也不行但是 从频域的delta函数到时域却行得通。

不妨用字母W来表示 ∞ \infty ,这个也把时域的(信号的函数)图像具象化为了总长度为2W,中点在原点的矩形,当W趋于无穷时,图像为一条平行于时间轴的直线,
x ( t ) = 1 2 π ∫ − W W e j ω t   d ω x(t) = \frac{1}{2\pi}\int_{-W}^{W} {e^{j\omega t}} \,{\rm d}\omega x(t)=2π1WWejωtdω
x ( t ) = 1 2 π ∫ − W W e j ω t   d ω = s i n W t π t x(t)=\frac{1}{2\pi}\int_{-W}^{W} {e^{j\omega t}} \,{\rm d}\omega=\frac{sinWt}{\pi t} x(t)=2π1WWejωtdω=πtsinWt
这个函数(被称为抽样函数)好像我们仍然不能解答,那就回到delta函数的原始定义中去
δ ( t ) = lim ⁡ k → + ∞ k π S a ( k t ) = lim ⁡ k → + ∞ s i n ( k t ) π t \delta(t)=\lim_{k \to +\infty} \frac{k}{\pi}Sa(kt)=\lim_{k \to +\infty} \frac{sin(kt)}{\pi t} δ(t)=k+limπkSa(kt)=k+limπtsin(kt)
当k=W,结果恰好为预期的 δ ( t ) \delta(t) δ(t)
同理,从时域上的 常量信号1傅里叶变换到频域也会遇到类似问题,用一样的方法解决。

除了这样直接求解还可以用傅里叶变换的对称性对
1 ⟷ 2 π δ ( ω ) 1 \longleftrightarrow 2\pi\delta (\omega) 12πδ(ω)
进行正向的求解
若已知
f ( t ) ⟷ F ( ω ) f(t) \longleftrightarrow F (\omega) f(t)F(ω)

F ( t ) ⟷ 2 π f ( − ω ) F(t) \longleftrightarrow 2\pi f (-\omega) Ft2πf(ω)
证明如下,
已知
F ( ω ) = ∫ − ∞ + ∞ f ( t ) e − j ω t   d t F(\omega) = \int_{-\infty}^{+\infty} {f(t)e^{-j\omega t}} \,{\rm d}t F(ω)=+f(t)ejωtdt
f ( t ) = 1 2 π ∫ − ∞ + ∞ F ( ω ) e j ω t   d ω f(t) = \frac{1}{2\pi}\int_{-\infty}^{+\infty} {F(\omega) e^{j\omega t}} \,{\rm d}\omega f(t)=2π1+F(ω)ejωtdω
f ( − t ) = 1 2 π ∫ − ∞ + ∞ F ( ω ) e − j ω t   d ω f(-t) = \frac{1}{2\pi}\int_{-\infty}^{+\infty} {F(\omega) e^{-j\omega t}} \,{\rm d}\omega f(t)=2π1+F(ω)ejωtdω
将 t 和 ω \omega ω变量互换
f ( − ω ) = 1 2 π ∫ − ∞ + ∞ F ( t ) e − j ω t   d t f(-\omega) = \frac{1}{2\pi}\int_{-\infty}^{+\infty} {F(t) e^{-j\omega t}} \,{\rm d}t f(ω)=2π1+F(t)ejωtdt
所以
F ( t ) ⟷ 2 π f ( − ω ) F(t) \longleftrightarrow 2\pi f (-\omega) Ft2πf(ω)
对于delta函数的具体运算就省略吧,代入就能解决。

  • 87
    点赞
  • 172
    收藏
    觉得还不错? 一键收藏
  • 9
    评论
傅里叶变换是一种非常重要的数学工具,用于将一个信号在时域中的波形转换成在频域中的能量分布。它是一种将信号分解为不同频率分量的方法,可以帮助我们更好地理解信号的特性。 傅里叶变换的数学表达式是通过将信号与一系列复指数函数相乘,并对其进行积分得到的。这一系列复指数函数是不同频率和幅度的正弦和余弦函数,它们组成了信号的频谱。 傅里叶变换的重要性在于它可以将信号从时域转换到频域。在频域中,我们可以看到信号的频率成分,进一步了解信号的频率特性、周期性以及频率成分的能量分布。这对于许多应用非常有用,例如在电子工程中的信号处理、通信系统中的调制解调、音频和图像处理等。 傅里叶变换有两种常见的形式:连续傅里叶变换(CTFT)和离散傅里叶变换(DFT)。连续傅里叶变换适用于连续时间的信号,而离散傅里叶变换适用于离散时间的信号。DFT是CTFT的离散版本,它通常在数字信号处理中使用。 傅里叶变换的逆变换可以将频域中的信号转换回时域。通过傅里叶变换和逆变换,我们可以在时域和频域之间进行转换,从而更好地分析和处理信号。 总之,傅里叶变换是一种非常有用的数学工具,用于将信号在时域和频域之间进行转换。它的应用广泛,对于信号处理、通信系统和其他领域的研究和应用都有重要意义。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值