最基础的傅里叶变换公式推导

学了信号分析处理好几年,平时偶尔遇到的信号的FT还是不会推,或者对某些形式的积分束手无策,本文写的几个最基础的信号的FT推导,纯粹是为了深挖和巩固基础。

(一)一维连续FT

在这里插入图片描述
推导几个简单的例子:

(1) f ( x ) = 1 f(x)=1 f(x)=1
作一维傅里叶变换:
(1) F ( u ) = ∫ − ∞ ∞ f ( x ) e − j 2 π u x d x = ∫ − ∞ ∞ e − j 2 π u x d x = δ ( u ) F(u)=\int_{-\infty}^{\infty}f(x)e^{-j2\pi ux}dx=\int_{-\infty}^{\infty}e^{-j2\pi ux}dx=\delta(u)\tag1 F(u)=f(x)ej2πuxdx=ej2πuxdx=δ(u)(1)

其中最后一步较难推导,又很美妙,特此重点记录下来,遇到类似的积分就会推了。
(标准正态分布的pdf积分结果为1推出了 ∫ − ∞ ∞ e − t 2 d t = π \int_{-\infty}^\infty e^{-t^2}dt=\sqrt{\pi} et2dt=π ,也是一个常用的但很难直接推的结果,详见这里

(2) ∫ − ∞ ∞ e − j 2 π u x d x = δ ( u ) \int_{-\infty}^{\infty}e^{-j2\pi ux}dx=\delta(u)\tag2 ej2πuxdx=δ(u)(2)
虽然直接推导不太会,但有了这个式子后自己反回去验证还是容易的,

  • 当u=0时被积函数为常数1,所以积分结果当然是1;
  • u取其它值时,被积函数用欧拉公式写成 c o s ( j 2 π u x ) − j s i n ( j 2 π u x ) cos(j2\pi ux)-jsin(j2\pi ux) cos(j2πux)jsin(j2πux),第二项奇函数在 − ∞ -\infty + ∞ +\infty +积分为0;第一项是偶函数,虽然不能根据奇偶性判断出在 − ∞ -\infty + ∞ +\infty +积分为0,但是由于cos的周期性,每个周期内积分都是0,那么在 − ∞ -\infty + ∞ +\infty +上可以认为有无限多个周期,所以认为它在全区间的积分也是0。

下面就可以用到公式(2)。
(2) f ( x ) = e j 2 π f 0 x f(x)=e^{j2\pi f_0x} f(x)=ej2πf0x
F ( u ) = ∫ − ∞ ∞ f ( x ) e − j 2 π u x d x = ∫ − ∞ ∞ e j 2 π f 0 x e − j 2 π u x d x F(u)=\int_{-\infty}^{\infty}f(x)e^{-j2\pi ux}dx=\int_{-\infty}^{\infty}e^{j2\pi f_0x}e^{-j2\pi ux}dx F(u)=f(x)ej2πuxdx=ej2πf0xej2πuxdx
(3) = ∫ − ∞ ∞ e − j 2 π ( u − f 0 ) x d x = δ ( u − f 0 ) =\int_{-\infty}^{\infty}e^{-j2\pi (u-f_0)x}dx=\delta(u-f_0)\tag3 =ej2π(uf0)xdx=δ(uf0)(3)

(3) f ( x ) = c o s ( 2 π f 0 x ) f(x)=cos(2\pi f_0x) f(x)=cos(2πf0x)
F ( u ) = ∫ − ∞ ∞ f ( x ) e − j 2 π u x d x = ∫ − ∞ ∞ e − j 2 π f 0 x + e j 2 π f 0 x 2 e − j 2 π u x d x = F(u)=\int_{-\infty}^{\infty}f(x)e^{-j2\pi ux}dx=\int_{-\infty}^{\infty}\frac{e^{-j2\pi f_0x}+e^{j2\pi f_0x}}{2}e^{-j2\pi ux}dx= F(u)=f(x)ej2πuxdx=2ej2πf0x+ej2πf0xej2πuxdx=
(4) 1 2 [ δ ( u + f 0 ) + δ ( u − f 0 ) ] \frac 12[\delta(u+f_0)+\delta(u-f_0)]\tag4 21[δ(u+f0)+δ(uf0)](4)

(4) f ( x ) = s i n ( 2 π f 0 x ) f(x)=sin(2\pi f_0x) f(x)=sin(2πf0x)
F ( u ) = ∫ − ∞ ∞ f ( x ) e − j 2 π u x d x = ∫ − ∞ ∞ e j 2 π f 0 x − e − j 2 π f 0 x 2 j e − j 2 π u x d x = F(u)=\int_{-\infty}^{\infty}f(x)e^{-j2\pi ux}dx=\int_{-\infty}^{\infty}\frac{e^{j2\pi f_0x}-e^{-j2\pi f_0x}}{2j}e^{-j2\pi ux}dx= F(u)=f(x)ej2πuxdx=2jej2πf0xej2πf0xej2πuxdx=
(5) 1 2 j [ δ ( u − f 0 ) − δ ( u + f 0 ) ] \frac {1}{2j}[\delta(u-f_0)-\delta(u+f_0)]\tag5 2j1[δ(uf0)δ(u+f0)](5)
(5)阶跃函数 u ( t ) u(t) u(t
(6)冲激函数 δ ( t ) \delta(t) δ(t
(7)门函数
(8)抽样函数


(二)一维离散傅里叶变换(DFT)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


(三)二维连续FT

在这里插入图片描述
写着写着突然感觉自己在写推导类习题的解析······这就是传说中的闲到写博客么······希望这不是再浪费时间·····

例子:

(1) f ( x , y ) = s i n 4 π x + c o s 6 π y f(x,y)=sin4\pi x+cos6\pi y f(x,y)=sin4πx+cos6πy

先考虑 s i n 4 π x sin4\pi x sin4πx
F ( s i n 4 π x ) = ∫ − ∞ ∞ ∫ − ∞ ∞ s i n 4 π x e − j 2 π ( u x + v y ) d x d y \mathcal F(sin4\pi x)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}sin4\pi xe^{-j2\pi (ux+vy)}dxdy F(sin4πx)=sin4πxej2π(ux+vy)dxdy
= ∫ − ∞ ∞ s i n 4 π x e − j 2 π u x d x ∫ − ∞ ∞ e − j 2 π v y d y =\int_{-\infty}^{\infty}sin4\pi xe^{-j2\pi ux}dx\int_{-\infty}^{\infty}e^{-j2\pi vy}dy =sin4πxej2πuxdxej2πvydy
= 1 2 j [ δ ( u − 2 ) − δ ( u + 2 ) ] δ ( v ) =\frac {1}{2j}[\delta(u-2)-\delta(u+2)]\delta(v) =2j1[δ(u2)δ(u+2)]δ(v)
= 1 2 j [ δ ( u − 2 , v ) − δ ( u + 2 , v ) ] =\frac {1}{2j}[\delta(u-2,v)-\delta(u+2,v)] =2j1[δ(u2,v)δ(u+2,v)]

注意:两个一维冲激函数的乘积是二位冲激函数。
F ( c o s 6 π y ) = ∫ − ∞ ∞ ∫ − ∞ ∞ c o s 6 π y e − j 2 π ( u x + v y ) d x d y \mathcal F(cos6\pi y)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}cos6\pi ye^{-j2\pi (ux+vy)}dxdy F(cos6πy)=cos6πyej2π(ux+vy)dxdy
= ∫ − ∞ ∞ c o s 6 π y e − j 2 π v y d y ∫ − ∞ ∞ e − j 2 π u x d x =\int_{-\infty}^{\infty}cos6\pi ye^{-j2\pi vy}dy\int_{-\infty}^{\infty}e^{-j2\pi ux}dx =cos6πyej2πvydyej2πuxdx
= 1 2 [ δ ( v − 3 ) + δ ( v + 3 ) ] δ ( u ) =\frac {1}{2}[\delta(v-3)+\delta(v+3)]\delta(u) =21[δ(v3)+δ(v+3)]δ(u)
= 1 2 [ δ ( u , v − 3 ) + δ ( u , v + 3 ) ] =\frac {1}{2}[\delta(u,v-3)+\delta(u,v+3)] =21[δ(u,v3)+δ(u,v+3)]
so
F ( u , v ) = ∫ − ∞ ∞ ∫ − ∞ ∞ f ( x , y ) e − j 2 π ( u x + v y ) d x d y F(u,v)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)e^{-j2\pi (ux+vy)}dxdy F(u,v)=f(x,y)ej2π(ux+vy)dxdy
= F ( s i n 4 π x ) + F ( c o s 6 π y ) =\mathcal F(sin4\pi x)+\mathcal F(cos6\pi y) =F(sin4πx)+F(cos6πy)
= 1 2 j [ δ ( u − 2 , v ) − δ ( u + 2 , v ) ] + 1 2 [ δ ( u , v − 3 ) + δ ( u , v + 3 ) ] =\frac {1}{2j}[\delta(u-2,v)-\delta(u+2,v)]+\frac {1}{2}[\delta(u,v-3)+\delta(u,v+3)] =2j1[δ(u2,v)δ(u+2,v)]+21[δ(u,v3)+δ(u,v+3)]
在这里插入图片描述
在这里插入图片描述


(四)二维离散傅里叶变换(DFT)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值