HDU4521解题报告(DP解决)

题目链接:点击打开链接

有的同学是用线段树来解决的,不过该题是最长递增序列的推广,所以我首先想到的是用DP来解决。

一、原始DP方法

有一种简单的DP思路,很容易想到,不过时间复杂度为O(n^2)提交后会超时,为了便于理解后面的算法,我这里还是先介绍该方法。

题意很简单就不多讲了,不过有一点需要注意,那就是题目给的S序列中可能会有重复元素。

约定:用数组seq[0...n  - 1] 存储S序列,dp[0....n - 1]表示dp值, n,d 的意义如题目中的描述

1、定义状态:

dp[i]表示以第i个元素为结尾的满足要求的子串最大的长度。

2、初始化:

初始dp[i] = 1  (0<= i < n),请读者自己思考为什么

3、状态转移:

dp[i] = max{dp[j] + 1 | i - j > d && seq[i]  > seq[j]}

4、代码:

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
const int maxn = (int)1e5 + 10;
struct Elem
{
        int val, index;
        bool operator < (const Elem& e) const
        {
            if(val != e.val)
                return val < e.val;
            else
                return index > e.index;
        }
};
Elem seq[maxn];
int dp[maxn];
int n,d;
int main(void)
{
    //freopen("f:\\code\\file\\data.txt", "r", stdin);
    while(scanf("%d%d", &n, &d) == 2)
    {
        for(int i = 0; i < n; i ++)
        {
            scanf("%d", &seq[i].val);
            seq[i].index = i;
            dp[i] = 1;
        }
        for(int i = 0; i < n; i ++)
        {
            for(int j = 0; j < i - d; j ++)
            {
                if(seq[i].val > seq[j].val)
                    dp[i] = max(dp[i], dp[j] + 1);
            }
        }
        printf("%d\n", *max_element(dp, dp + n));
    }
    return 0;
}


5、运行结果:

超时

二、优化到O(nlogn)的方法

如何减小算法的时间复杂度呢?这里我参照的是最长递增序列中的方法,具体优化思想,见我的另一篇博客点击打开链接

1、主要思想:

(1)记录每个元素的值和下标。(2)排序,按键值从小到大,下标从大到小进行排序。(至于为什么这样?请读者理解我上面那篇博客的思想之后,自己思考,因为描述的话很复杂)

2、需要注意的问题:

因为S序列中可能会有重复元素,所以在排序时如果值相同,则按下表从大到小的顺序排列

3、代码:

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
const int maxn = (int)1e5 + 10;
struct Elem
{
        int val, index;
        bool operator < (const Elem& e) const
        {
            if(val != e.val)
                return val < e.val;
            else
                return index > e.index;
        }
};
bool cmp(const Elem& e1, const Elem& e2)
{
    return e1.index < e2.index;
}
Elem seq[maxn];
Elem dp[maxn];
int n, d;
int main(void)
{
//    freopen("f:\\code\\file\\data.txt", "r", stdin);
    while(scanf("%d%d", &n, &d) == 2)
    {
        for(int i = 0; i < n; i ++)
        {
            scanf("%d", &seq[i].val);
            seq[i].index = i;
        }
        sort(seq, seq + n);
        dp[0] = (struct Elem){-maxn, -maxn};
        int m = 1;
        for(int i = 0; i < n; i ++)
        {
            int tmp = upper_bound(dp, dp + m, seq[i], cmp) - dp;
            if(tmp == m)
            {
                if(seq[i].index - dp[m - 1].index > d && seq[i].val != dp[m - 1].val)
                    dp[m ++] = seq[i];
            }
            else
            {
                if(seq[i].index - dp[tmp - 1].index > d && seq[i].val != dp[tmp - 1].val)
                    dp[tmp] = seq[i];
            }
        }
        printf("%d\n", m - 1);
    }
    return 0;
}

4、运行结果:

Accepted



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值