nextbox

机器学习,数据挖掘

k-means算法

聚类算法选择:
如果数据维度很高,可以选择谱聚类,它是基于选择用聚类密切相关的维度,对子空间进行聚类
如果数据为小规模的少于100万条,可以使用KMEANS,如果超过100万条,可以用考虑使用mini batch kmeans
如果数据有离群点,可以考虑dbscan
如果追求分类准确率,谱聚类比kmeans好

聚类算法常用的指标:
兰德系数(rand index):给定实际类别信息 c,k为聚类的结果,a为c和k都是同类别的元素对,b为不同类别的元素对
RI = (a+b)/C2nsamples
C2nsamples为数据集中可以组成的所有元素对数
RI取值为[0,1],值越大表示聚类效果越好
调整后的兰德系数(ajusted rand index): RIE(RI)max(RI)E(RI)取值为【-1,1】
轮廓系数(silhouette coefficient)a为一个样本与簇内其他样本的平均距离,b为样本与最近簇中所有样本的平均距离,轮廓系数定义为:
s=bamax{b,a}
取值范围为[-1,1]

阅读更多
上一篇亚马逊苹果手机数据爬取
下一篇回归算法
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭