25.cuBLAS开发指南中文版--cuBLAS中的Level-2函数symv()

本文介绍cuBLAS库中用于执行对称矩阵向量乘法的函数cublas<t>symv()。该函数支持单精度、双精度以及复数类型的输入,并提供了一个更快的实现方式,可通过cublasSetAtomicsMode()启用原子操作来加速计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2.6.8. cublas<t>symv()

在这里插入图片描述

cublasStatus_t cublasSsymv(cublasHandle_t handle, cublasFillMode_t uplo,
                           int n, const float           *alpha,
                           const float           *A, int lda,
                           const float           *x, int incx, const float           *beta,
                           float           *y, int incy)
cublasStatus_t cublasDsymv(cublasHandle_t handle, cublasFillMode_t uplo,
                           int n, const double          *alpha,
                           const double          *A, int lda,
                           const double          *x, int incx, const double          *beta,
                           double          *y, int incy)
cublasStatus_t cublasCsymv(cublasHandle_t handle, cublasFillMode_t uplo,
                           int n, const cuComplex       *alpha, /* host or device pointer */
                           const cuComplex       *A, int lda,
                           const cuComplex       *x, int incx, const cuComplex       *beta,
                           cuComplex       *y, int incy)
cublasStatus_t cublasZsymv(cublasHandle_t handle, cublasFillMode_t uplo,
                           int n, const cuDoubleComplex *alpha,
                           const cuDoubleComplex *A, int lda,
                           const cuDoubleComplex *x, int incx, const cuDoubleComplex *beta,
                           cuDoubleComplex *y, int incy)

此函数执行对称矩阵向量乘法。

y = α A x + β y y = \alpha Ax+\beta y y=αAx+βy

其中 A 是以低模式或高模式存储的 n*n 对称矩阵,x 和y 是向量,而 α \alpha α β \beta β是标量。

这个函数有另一个更快的实现,它使用可以通过 cublasSetAtomicsMode() 启用的原子。

请参阅函数 cublasSetAtomicsMode() 部分了解有关原子使用的更多详细信息。

Param.MemoryIn/outMeaning
handleinputhandle to the cuBLAS library context.
uploinputindicates if matrix A lower or upper part is stored, the other symmetric part is not referenced and is inferred from the stored elements.
ninputnumber of rows and columns of matrix A.
alphahost or deviceinput<type> scalar used for multiplication.
Adeviceinput<type> array of dimension lda x n with lda>=max(1,n).
ldainputleading dimension of two-dimensional array used to store matrix A.
xdeviceinput<type> vector with n elements.
incxinputstride between consecutive elements of x.
betahost or deviceinput scalar used for multiplication, if beta==0 then y does not have to be a valid input.
ydeviceinput<type> vector with n elements.
incyinputstride between consecutive elements of y.

该函数可能返回的错误值及其含义如下所列。

ErrorValueMeaning
CUBLAS_STATUS_SUCCESS操作成功完成
CUBLAS_STATUS_NOT_INITIALIZED库未初始化
CUBLAS_STATUS_INVALID_VALUE参数 m,n<0 或 incx,incy=0
CUBLAS_STATUS_EXECUTION_FAILED该功能无法在 GPU 上启动

请参考:
ssymv, dsymv

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

扫地的小何尚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值