1. 排序二叉树
排序二叉树是一种特殊结构的二叉树,可以非常方便地对树中所有节点进行排序和检索。
排序二叉树要么是一棵空二叉树,要么是具有下列性质的二叉树:
- 若它的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
- 若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值;
- 它的左、右子树也分别为排序二叉树。
图 1 显示了一棵排序二叉树:
图 1. 排序二叉树
对排序二叉树,若按中序遍历就可以得到由小到大的有序序列。如图 1 所示二叉树,中序遍历得:
{2,3,4,8,9,9,10,13,15,18}
2、AVL树:
平衡二叉树,一般是用平衡因子差值决定并通过旋转来实现,左右子树树高差不超过1,那么和红黑树比较它是严格的平衡二叉树,平衡条件非常严格(树高差只有1),只要插入或删除不满足上面的条件就要通过旋转来保持平衡。由于旋转是非常耗费时间的。我们可以推出AVL树适合用于插入删除次数比较少,但查找多的情况。
应用:
相对其他数据结构比较少。windows对进程地址空间的管理用到了AVL树。
3、红黑树:
平衡二叉树,通过对任何一条从根到叶子的简单路径上各个节点的颜色进行约束,确保没有一条路径会比其他路径长2倍,因而是近似平衡的。所以相对于严格要求平衡的AVL树来说,它的旋转保持平衡次数较少。用于搜索时,插入删除次数多的情况下我们就用红黑树来取代AVL。
应用:
· 广泛用在C++的STL中。map和set都是用红黑树实现的。
· 著名的linux进程调度Completely Fair Scheduler,用红黑树管理进程控制块。
· epoll在内核中的实现,用红黑树管理事件块
· nginx中,用红黑树管理timer等
· Java的TreeMap实现
4、B树,B+树:
它们特点是一样的,是多路查找树,一般用于数据库中做索引,因为它们分支多层数少,因为磁盘IO是非常耗时的,而像大量数据存储在磁盘中所以我们要有效的减少磁盘IO次数避免磁盘频繁的查找。
B+树是B树的变种树,有n棵子树的节点中含有n个关键字,每个关键字不保存数据,只用来索引,数据都保存在叶子节点。是为文件系统而生的。
B+树相对B树磁盘读写代价更低:因为B+树非叶子结点只存储键值,单个节点占空间小,索引块能够存储更多的节点,从磁盘读索引时所需的索引块更少,所以索引查找时I/O次数较B-Tree索引少,效率更高。而且B+Tree在叶子节点存放的记录以链表的形式链接,范围查找或遍历效率更高。Mysql InnoDB用的就是B+Tree索引。