Python+Selenium+Firefox headless 配置

    最近爬虫要用到Python爬一个比较复杂的网站,PhantomJs好像停止维护了,所以选择了Selenium+Firefox headless,查了一些Firefox相关的配置,记录一下
查看支持的配置:

Firefox版本:60.0.2(64)

地址栏输入about:config打开配置页

英语好的大神可以去About:config英文地址查看原注释(网页加载很慢,有时一次加载不出来,刷新一下就行了)


下载火狐浏览器驱动:

火狐浏览器驱动可直接从网上下载:geckodriver的下载链接:https://github.com/mozilla/geckodriver/releases

下载后扔到Python根目录


安装Selenium:
CMD -> pip3 install selenium

Python中的配置代码:

from selenium import webdriver

#无头模式
options = webdriver.FirefoxOptions()
options.add_argument('-headless')

profile = webdriver.FirefoxProfile()
#禁用图片
profile.set_preference('permissions.default.image', 2)
#禁用Flash
profile.set_preference('dom.ipc.plugins.enabled.npswf32.dll', 'false')#Windows
profile.set_preference('dom.ipc.plugins.enabled.libflashplayer.so', 'false')#Linux
#禁用Js
profile.set_preference('javascript.enabled', 'false')

browser = webdriver.Firefox(options=options,firefox_profile = profile)
#查看拥有的各种方法、属性
print(dir(browser))

browser.get("https://blog.csdn.net/kunorz")
#截图
browser.get_screenshot_as_file('myblog.png')
#获取网页源码
page = browser.page_source
print(page)

#关闭
browser.close()

浏览器记得要关闭,不然会打开很多个

更多方法请看Selenium package API


一些用得到的配置:
1.permissions.default.image = 2

0:加载所有图片

1:Load images from same (originating) server only(就这个意思)

2:不加载图片

2.javascript.enabled = true

js解析功能

2.network.prefetch-nextfalse = false

预加载功能,载入一个网页后,会预加载你可能会打开的网页链接内容。

3.network.dns.disableIPv6 = true

禁用IPv6,IPv4是主流,IPv6数量很少,很少会去解析,关闭它可以提高速度。

有需要再去源地址About:config英文地址查找





Python配合Selenium做滑块验证码自动验证的基本流程是这样的: 1. **安装依赖**: 首先,确保已经安装了`selenium`库,可以通过命令行执行 `pip install selenium` 完成安装。此外,还需要相应的浏览器驱动,例如Chromedriver或FirefoxDriver,根据你的浏览器类型选择合适的。 2. **启动浏览器**:Python脚本中初始化Selenium,创建一个`webdriver.Chrome()`或`webdriver.Firefox()`实例。为了不显示实际的浏览器窗口,可以设置`options`参数,如 `options.headless=True`。 ```python from selenium import webdriver # 后续加上对应浏览器的选项 options = webdriver.ChromeOptions() options.add_argument('--headless') options.add_argument('--disable-gpu') driver = webdriver.Chrome(options=options) ``` 3. **导航到登录页面**: 使用`get`方法加载目标登录页面URL。 ```python login_url = "https://your-website.com/login" driver.get(login_url) ``` 4. **找到滑块元素**: 使用`find_element_by_*`方法定位滑块元素,如`find_element_by_id('captcha')`或`find_element_by_xpath('//img[contains(@class, "captcha")]')`等。这里假设滑块是一个图像元素。 ```python captcha_elem = driver.find_element_by_id('captcha') ``` 5. **截取并处理滑块图片**: 用`screenshot_as_png`方法截图滑块,然后使用OpenCV或PIL库对图片进行预处理,包括灰度化、二值化等操作,以便后续的字符识别。 ```python import cv2 import numpy as np # 获取滑块图片 captcha_image = captcha_elem.screenshot_as_png # 读取图片 img = np.array(Image.open(BytesIO(captcha_image))) # 对图片进行预处理 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) ``` 6. **字符识别**: 可能需要借助OCR(Optical Character Recognition)工具,如`tesseract`,将预处理后的图像转为文本。注意这步需要正确配置`tesseract`。 ```python from pytesseract import image_to_string text = image_to_string(binary, lang='eng', config='--psm 11') # psm 11表示去除干扰线 ``` 7. **模拟滑动验证**: 根据识别出的文字,计算滑动条的位置并模拟鼠标移动。由于这是一个抽象的概念,具体实现取决于滑块验证码的具体形式。 8. **提交表单**: 输入滑块验证码之后,找到提交按钮或者其他验证通过的信号元素,如点击事件。 ```python captcha_input_field = driver.find_element_by_id('captcha_input') # 假设有一个input元素接受验证码 captcha_input_field.send_keys(text) submit_button = driver.find_element_by_css_selector('#submit-button') submit_button.click() ``` 9. **等待验证完成**: 验证完成后,可能需要等待一段时间让滑块验证完成,例如使用`time.sleep()`。 10. **检查登录状态**: 检查登录后的行为或页面内容确认是否登录成功。 11. **关闭浏览器**: 最后,别忘了关闭浏览器会话。 ```python driver.quit() ``` 请注意,滑块验证码的实现往往非常复杂,尤其当涉及到动态加载或实时更新时,上述过程可能不够准确。实际项目中可能需要更精细的处理和错误处理。另外,遵循网站的robots.txt规则以及尊重其反爬虫策略是非常重要的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值