神经网络中的算法
文章平均质量分 87
kupeThinkPoem
这个作者很懒,什么都没留下…
展开
-
神经网络中的常用算法-BP算法
反向传播BP算法是 "误差反向传播" 的简称,也称为backprop,允许来自代价函数的信息通过网络向后流动,以便计算梯度。反向传播是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。反向传播这个术语经常被误解为用于多层神经网络的整个学习算法。实际上,反向传播仅指用于计算梯度的方法。而另一种算法,例如随机梯度下降法,才是使用该梯度来进行学习。原创 2022-11-08 23:28:39 · 4900 阅读 · 0 评论 -
神经网络中的常用算法-梯度下降算法的优化
优先选择学习速率自适应的算法如RMSprop和Adam算法,目前比较常用的应该仍是 Adam ,大部分情况下其效果是较好的。还有一定要特别注意学习速率的问题。其实还有很多方面会影响梯度下降算法,如梯度的消失与爆炸,这也是要额外注意的。最后不得不说,梯度下降算法目前无法保证全局收敛。原创 2022-10-26 22:52:02 · 3384 阅读 · 0 评论 -
神经网络中的常用算法-梯度下降算法
梯度下降法(Gradient descent )是一个一阶最优化算法,通常也称为最陡下降法 ,要使用梯度下降法找到一个函数的局部极小值 ,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程则被称为梯度上升法 ,相反则称之为梯度下降法。说起梯度下降算法,其实并不是很难,它的重要作用就是求函数的极值。梯度下降就是求一个函数的最小值,对应的梯度上升就是求函数最大值。原创 2022-10-25 22:52:09 · 4549 阅读 · 0 评论 -
神经网络中的常用算法-BN算法
但是当一张图片输入到神经网络经过卷积计算之后,这个分布就不会满足刚才经过image normalization操作之后的分布了,可能适应了新的数据分布规律,这个时候将数据接入激活函数中,很可能一些新的数据会落入激活函数的饱和区,导致神经网络训练的梯度消失,如下图所示当feature map的数据为10的时候,就会落入饱和区,影响网络的训练效果。另一方面使得每一层可以尽量面对同一特征分布的输入值,减少了变化带来的不确定性,也降低了对后层网络的影响,各层网络变得相对独立,缓解了训练中的梯度消失问题。原创 2022-10-16 20:39:32 · 2214 阅读 · 4 评论