TonyY是一个喜欢到处浪的男人,他的梦想是带着兰兰姐姐浪遍天朝的各个角落,不过在此之前,他需要做好规划。
现在他的手上有一份天朝地图,上面有n个城市,m条交通路径,每条交通路径都是单行道。他已经预先规划好了一些点作为旅游的起点和终点,他想选择其中一个起点和一个终点,并找出从起点到终点的一条路线亲身体验浪的过程。但是他时间有限,所以想选择耗时最小的,你能告诉他最小的耗时是多少吗?
Input
包含多组测试数据。
输入第一行包括两个整数n和m,表示有n个地点,m条可行路径。点的编号为1 - n。
接下来m行每行包括三个整数i, j, cost,表示从地点i到地点j需要耗时cost。
接下来一行第一个数为S,表示可能的起点数,之后S个数,表示可能的起点。
接下来一行第一个数为E,表示可能的终点数,之后E个数,表示可能的终点。
0 < S, E ≤ n ≤ 100000,0 < m ≤ 100000,0 < cost ≤ 100。
Output
输出他需要的最短耗时。
Sample Input
4 4
1 3 1
1 4 2
2 3 3
2 4 4
2 1 2
2 3 4
Sample Output
1
多源最短路径,题目卡dijkstra的nlogn算法,貌似卡特别卡了优先队列。用dijkstra跑会超时。多源最短路径建立一个超级起点和一个超级终点,将所有可能的起点和终点和超级起点终点连接,用SPFA跑一遍最短路即可。但听说数据会很水,如果用SPFA来跑,每一个起点跑一次最短路都不会超时。
#include<stdio.h>///多源最短路径
#include<queue>
#include<string.h>
#include<vector>
using namespace std;
const int maxn=1e5+10;
struct edge
{
int to,val;
edge(){}
edge(int a,int b)
{
to=a;
val=b;
}
};
vector<edge>mp[maxn];
int n,m,s,e;
bool vis[maxn];
int dist[maxn];
void SPFA(int s)
{
queue<int>q;
while(!q.empty())q.pop();
memset(dist,0x7f,sizeof dist);
memset(vis,false,sizeof vis);
dist[s]=0;
vis[s]=true;
q.push(s);
while(!q.empty())
{
int top=q.front();
q.pop();
vis[top]=false;
for(int i=0; i<mp[top].size(); i++)
{
int v=mp[top][i].to;
if(dist[v]>dist[top]+mp[top][i].val)
{
dist[v]=dist[top]+mp[top][i].val;
if(!vis[v])
{
vis[v]=true;
q.push(v);
}
}
}
}
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
int from,to,val;
for(int i=0;i<=n;i++)mp[i].clear();
for(int i=0;i<m;i++)
{
scanf("%d%d%d",&from,&to,&val);
mp[from].push_back(edge(to,val));
}
int tmp;
scanf("%d",&s);///多个起点,建立超级起点连接,边权为0
for(int i=0;i<s;i++)scanf("%d",&tmp),mp[0].push_back(edge(tmp,0));
scanf("%d",&e);///多个终点,建立超级终点连接,边权为0
for(int i=0;i<e;i++)scanf("%d",&tmp),mp[tmp].push_back(edge(n+1,0));
SPFA(0);
printf("%d\n",dist[n+1]);
}
}