eclipse的使用技巧小结

一,eclipse使用前的说明

公司用的eclipse是3.1的比较老了,我自己用的呢3.4了,下面所说的技巧,是在没有改变热键的情况说的。

二,使用技巧

1)alt+/   它的做用是提示,有的人喜欢把它叫做自动补全,都是可以的。它可以提示java,php,js,html等,这些大家可以自己亲自去试一下,如下图。在.php的文件中,有提示。如果是.js和.html中,这个热键就不起做用了

自动提示alt+/

自动提示alt+/

 

2) ctrl+alt+/它也是提示,也是自动补全,它和1)有什么区别呢,它会自动补全,不会出现提示给你选择,它可以提示java,php,js,html等。

3) ctrl+/  注释代码。在.php的文件中,有提示。如果是.js和.html中,这个热键就不起做用了

4)ctrl+鼠标点击 追踪你要看的类,方法,变量。

5)ctrl+shift+f  对php代码进行排版,输入array("aaa","bbbb","cccc","ddddd","eeeeeee");然后试一下这个热键,我靠,挺好用

6)ctrl+fctrl+h都是查找东西,他们的不同是就在于,ctrl+f是在当前页面中查找,你要查找的东西,ctrl+h是在当前的整个项目中查找你要查找的东西

7)ctrl+e显示隐藏的文件,当你打开的文件过多的时候,就会有一些文件隐藏在右上角。

ctrl+e

ctrl+e

8)ctrl+w关闭当前的窗口

9)ctrl+shift+w关闭所有窗口

10)ctrl+q退回到最近改动的一个文件中,什么意思呢,就是你改动一个文件,然后点了其他文件,你在按ctrl+q会回到你改的那个文件窗口中

11)ctrl+k搜索下一个,ctrl+shift+k搜索上一个,这个操作,必须在ctrl+f以后才能看出效果

12)ctrl+l输入行数就会跳过去,这个东西一般用在一个文件行数太多的时候,找起来麻烦。

13)ctrl+shift+/这个东东呢,是给php代码加注释的,它和ctrl+/有什么不同呢,ctrl+shift+/可以注释一个很多行,而ctrl+/只能注释一行,选中一个段落,按ctrl+shift+/看看有什么效果吧

14)ctrl+m或者ctrl+小键盘回车,编辑框最大化,自己试一下吧

15)alt+回车查看文件属性,我用它是最多的时候,是改变文件编码

16)ctrl+F11运行文件

17)  选中代码按Tab键,选中代码会向右称动一个tab位置

18)选中代码按SHIFT+Tab键,选中代码会向左称动一个tab位置

三,总结

上面所列出的只是常用的小技巧,个人觉得常用的掌握一下,写代码的效率肯定会有所提高的,个人觉得必须掌握以下几个小技巧。

alt+/  ,ctrl+alt+/ ,ctrl+鼠标点击  ,ctrl+shift+f  ,ctrl+shift+/ ,ctrl+f和ctrl+h,Tab,SHIFT+Tab

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值