算法
文章平均质量分 85
DemonHunter211
这个作者很懒,什么都没留下…
展开
-
随机森林 RF
随机森林”是数据科学最受喜爱的预测算法之一。 20世纪90年代主要由统计学家Leo Breiman开发,随机森林因其简单而受到珍视。 虽然对于给定问题并不总是最准确的预测方法,但它在机器学习中占有特殊的地位,因为即使是那些刚接触数据科学的人也可以实现并理解这种强大的算法。随机森林树我们之前学习过分类树,随机森林就是种了很多分类树。对输入向量进行分类。每一颗树都是分类,要对这个输入向量进行"投票"。森林就是选择投票最多的那个树。- 现在我们需要在森林里找N个数据进行训练,那训练集数量为N.原创 2021-08-25 16:39:11 · 1823 阅读 · 0 评论 -
强人工智能
强人工智能的概念与定义1985 年 9 月 26 日,诺贝尔物理学奖得主,也被称为爱因斯坦之后最睿智的理论物理学家,第一位提出纳米概念的人 —— 理查德·费曼(Richard Feynman)在一次讲座中第一次提出了强人工智能的概念。一般而言,弱人工智能不需要具有人类完整的认知能力,甚至是完全不具有人类所拥有的感官认知能力,只要设计得看起来像有智慧就可以了。因此,过去我们所认知到的人工智能大多是弱人工智能,并且人们一度觉得强人工智能是不可能实现的。强人工智能也称通用人工智能(artifi原创 2021-07-19 11:04:15 · 4655 阅读 · 0 评论 -
强人工智能和弱人工智能
科技发展到啦今天,人工智能也在我们的身边悄然的出现,而每次人工智能的更新出现都会在科技领域上掀起浪潮。哪随着人工智能的发展,现在的人工智能和我们想象的人工智能有什么不同,像电影中的人工智能能实现吗?因此我们是否要给我们现在的人工智能贴上标签!对比电影中的人工智能在看看现在的人工智能,的确显得有一点low因为他并不能像电影中那么强大。因此像电影 终结者 的情节:机器人统治人类,赶尽杀绝,这种极端的是事情目前是不会出现的。我们都知道人工智能是研究开发用于模拟、延伸和扩展人的智能的理论、.原创 2021-07-19 10:43:26 · 2682 阅读 · 1 评论 -
四种基本的神经网络
什么是神经网络神经网络是机器学习中的一种模型,是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。一般来说,神经网络的架构可以分为三类:前馈神经网络:这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。如果有多个隐藏层,我们称之为“深度”神经网络。他们计算出一系列改变样本相似性的变换。各层神经元的活动是前一层活动的非线性函数。循环网络:循环网络在他们的连接图中定向了..原创 2020-11-30 11:30:33 · 21416 阅读 · 3 评论 -
深度学习 GPU vs FPGA
人工智能人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人..原创 2020-11-30 10:48:20 · 897 阅读 · 0 评论 -
R语言 PCA 主成分分析
1、关键点综述:主成分分析 因子分析 典型相关分析,三种方法的共同点主要是用来对数据降维处理的从数据中提取某些公共部分,然后对这些公共部分进行分析和处理。#主成分分析 是将多指标化为少数几个综合指标的一种统计分析方法主成分分析是一种通过降维技术把多个变量化成少数几个主成分的方法,这些主成分能够反映原始变量的大部分信息,他们通常表示为原始变量的线性组合。2、函数总结#R中作为主成分分析最主要的函数是princomp()函数#princomp()主成分分析 可以从相...原创 2020-08-07 17:56:13 · 3666 阅读 · 0 评论 -
Python svm 支持向量机
#from sklearn import datasets#iris=datasets.load_iris()import numpy as npfrom sklearn import svmimport matplotlib as mplimport matplotlib.pyplot as pltfrom sklearn.model_selection import train_test_split%matplotlib inline def iris_type(s): ..原创 2020-08-07 17:38:21 · 413 阅读 · 0 评论 -
R-4.0.2 语言实现SVM
library(lattice)xyplot(Petal.Length ~ Petal.Width, data = iris, groups = Species, auto.key=list(corner=c(1,0)))data("iris")attach(iris)subdata<-iris[iris$Species != 'virginica',]subdata$Species<-factor(subdata$Species) libr...原创 2020-08-03 15:35:38 · 357 阅读 · 0 评论 -
centos7 R-4.0.2 安装
清华的R语言镜像链接:https://mirrors.tuna.tsinghua.edu.cn/CRAN/tar -zvxf R-4.0.2.tar.gzcd R-*yum install -y gccyum install -y gcc-gfortranyum install -y gcc-c++yum install -y glibc-headersyum install -y libreadline6-dev gfortran yum install -y r...原创 2020-08-03 11:36:15 · 3624 阅读 · 0 评论 -
ADB Interface 找不到驱动程序 怎么破
百度了一下,这种方法亲试有效:1,计算机-->右击 --> 管理 --> 设备管理器2,双击带黄色感叹号的ADB Interface3,点击更新驱动程序4,点击 “浏览计算机以。。。。。”5,点击“从计算机的设备。。。”6,点击“下一步”7,点击“从磁盘安装”8,在弹出的对话框中选择“浏览”。选择电脑上的Android SDK目录中的...原创 2020-04-26 18:49:03 · 2276 阅读 · 0 评论 -
ARM,AMD,X86,AArch64的概念
AMD,中文名(超威)超微半导体,是除了英特尔以外最大的x86架构微处理供应商,也是除了英伟达以外仅有的独立图形处理供应商。x86泛指一系列由英特尔公司开发的处理器的架构,最早为1978年面世的“Intel 8086”CPU。早期的处理器均是以此格式来命名,如Intel 8086,80186,80286,80386,80486,这些架构被统称为x86。由于数字不能被注册成为商标,因此公司每当有...原创 2020-04-23 10:27:50 · 11188 阅读 · 0 评论 -
卷积神经网络-ResNet
背景知识研究表明,特征的层次随着堆叠的层数(层深度)增加变得丰富。许多研究开始致力于加深层深度。随着层深度的重要性的突显,一个问题也被提出:Is learning better networks as easy as stacking more layers?首先,梯度消失/爆炸是一个巨大的挑战,该问题可以通过正则初始化和层正则化解决。随着层深度的加深,另一个重要问题:精度退化和训练错误率...原创 2020-03-09 09:50:43 · 225 阅读 · 0 评论 -
从结构到性能,一文概述XGBoost、Light GBM和CatBoost的同与不同
尽管近年来神经网络复兴并大为流行,但是 boosting 算法在训练样本量有限、所需训练时间较短、缺乏调参知识等场景依然有其不可或缺的优势。本文从算法结构差异、每个算法的分类变量时的处理、算法在数据集上的实现等多个方面对 3 种代表性的 boosting 算法 CatBoost、Light GBM 和 XGBoost 进行了对比;虽然本文结论依据于特定的数据集,但通常情况下,XGBoost 都比另...原创 2020-02-25 11:10:41 · 542 阅读 · 0 评论 -
机器学习算法之LightGBM
这篇文章我们继续学习一下GBDT模型的另一个进化版本:LightGBM。LigthGBM是boosting集合模型中的新进成员,由微软提供,它和XGBoost一样是对GBDT的高效实现,原理上它和GBDT及XGBoost类似,都采用损失函数的负梯度作为当前决策树的残差近似值,去拟合新的决策树。LightGBM在很多方面会比XGBoost表现的更为优秀。它有以下优势:更快的训练效率 低内存...原创 2020-02-25 10:01:30 · 5670 阅读 · 0 评论 -
机器学习之XGBoost分类器XGBClassifier-- xgb使用sklearn接口
机器学习之XGBoost分类器XGBClassifier# -*- coding: utf-8 -*-"""@author: abc"""''' xgb使用sklearn接口(推荐)--官方: 会改变的函数名是: eta -> learning_rate lambda -> reg_lambda alpha -> reg_...原创 2020-02-25 09:58:03 · 2237 阅读 · 0 评论 -
密码学理论总结
在过去的一年中因为工作需要接触了密码学相关的知识,现在开一篇文章从六个点对密码学做个简单的概括总结:在开始之前先感谢几位老师,有的是在工作中对我悉心指导,有的是发表的书籍,还有的一些网络课程很生动如下: Philips researcher 葛博士,在最初的时候耐心讲解和指导尤其在项目应用上,《密码学基础与安全应用》的各位作者,在里面找到了很多答案,《得到-密码学30奖》作者 卓客老师,文...原创 2020-02-18 11:26:53 · 1283 阅读 · 0 评论 -
初探梯度下降之随机梯度下降(SGD)
随机梯度下降算法先解释一些概念。1.什么是梯度下降我们先从一张图来直观解释这个过程。如上图假设这样一个场景:一个人被困在山上,需要从山上下来,但此时山上的浓雾很大,导致可视度很低。因此,下山的路径就无法确定,他必须利用自己周围的信息去找到下山的路径。这个时候,他就可以利用梯度下降算法来帮助自己下山。具体来说就是,以他当前的所处的位置为基准,寻找方向,然后朝着山的高度下降的地方...原创 2020-02-15 23:06:46 · 1150 阅读 · 0 评论 -
用BP神经网络进行数据拟合
虽然近年来人工智能经常成为热门议题,但它还远未实现真正的成就。人工智能技术发展的主要障碍在于投资成本,投资成本影响短期内的回报。而当时机成熟时,投资AI的公司却可以获得巨大的回报。在最近的一份报告中,麦肯锡预测人工智能领头企业未来将会实现现金流翻倍。我们可以在谷歌母公司Alphabet财报收入中的“其他投注”里看到一些证据,如2018年其人工智能项目亏损达33.5亿美元。其中,Deep M...原创 2020-02-11 23:41:03 · 2733 阅读 · 0 评论 -
预测学
古代传统预测学是集阴阳、五行、周易、四柱、八卦、奇门遁甲等于一体的以推测已知或未知的事件为目的的一门学科。无知者认为其带有迷信色彩,其实万事万物有规律。现代预测学科学或称预测的科学研究无所不在的不确定性,旨在控制随机性以及减少无知的程度。预测学通过开发数学模型和程序:制定事物未来发展的可靠预测揭示过去发生事件的准确结果。创立编辑Jakob Bernoulli(1654—1705)...原创 2019-12-25 17:40:23 · 1027 阅读 · 0 评论 -
一文读懂机器学习,大数据/自然语言处理/算法全有了……
机器学习是什么,为什么它能有这么大的魔力,这些问题正是本文要回答的。同时,本文叫做“从机器学习谈起”,因此会以漫谈的形式介绍跟机器学习相关的所有内容,包括学科(如数据挖掘、计算机视觉等),算法(神经网络,svm)等等。本文的主要目录如下:1.一个故事说明什么是机器学习2.机器学习的定义3.机器学习的范围4.机器学习的方法5.机器学习的应用–大数据6.原创 2017-07-14 09:34:34 · 786 阅读 · 0 评论 -
神经网络系列讲解之离散型Hopfield网络
Hopfield网络及学习算法最初是由美国物理学家J.J Hopfield于1982年首先提出的,曾经为人工神经网络的发展进程开辟了新的研究途径。它利用与阶层型神经网络不同的结构特征和学习方法,模拟生物神经网络的记忆机理,获得了令人满意的结果。 Hopfield最早提出的网络是二值神经网络,神经元的输出只取1和0,所以,也称离散Hopfield神经网络(Discrete Hopfie原创 2017-07-14 09:28:00 · 4101 阅读 · 0 评论 -
mahout实现的算法集
mahout实现的算法:(翻译自mahout官方文档:点击打开链接)(一)Classification(分类算法)完全支持:1.Logistic Regression(Logistic回归)2.Naive Bayes/ Complementary Naive Bayes(朴素贝叶斯/互补的朴素贝叶斯)3.Random Forests(随机森林)4.Hidden Markov原创 2017-07-13 17:28:11 · 582 阅读 · 0 评论 -
统治世界的十大算法
软件正在统治世界。而软件的核心则是算法。算法千千万万,又有哪些算法属于“皇冠上的珍珠”呢?Marcos Otero给出了他的看法。 什么是算法? 通俗而言,算法是一个定义明确的计算过程,可以一些值或一组值作为输入并产生一些值或一组值作为输出。因此算法就是将输入转为输出的一系列计算步骤。统治世界的十大算法软件正在统治世界。而软件的核心则是算法。算法千千万万,又有哪些算法属于“皇冠上的珍珠”呢?Mar原创 2017-07-14 10:08:01 · 322 阅读 · 0 评论 -
推荐系统那点事 —— 什么是用户画像?
用户画像在大数据分析中是一种很有用的系统,它可以各种不同的系统中,起到很关键的作用。比如搜索引擎、推荐系统、内容系统等等,可以帮助应用实现千人千面、个性化、精准等的效果。下面将从几个方面来说一下,什么是用户画像,主要的内容来自《用户网络行为画像分析与内容推荐应用》这本书。应用场景数据来源特性建模群体画像画像的存储画像的查询画像的更新图片来自京东——想要购买可以点原创 2017-07-30 21:30:52 · 2653 阅读 · 0 评论 -
一文读懂机器学习,大数据/自然语言处理/算法全有了
在本篇文章中,我将对机器学习做个概要的介绍。本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践。这篇文档也算是EasyPR开发的番外篇,从这里开始,必须对机器学习了解才能进一步介绍EasyPR的内核。当然,本文也面对一般读者,不会对阅读有相关的前提要求。在进入正题前,我想读者心中可能会有一个疑惑:机器学习有什么重要性,以至于要阅读完这篇非常长的文章呢原创 2017-07-30 21:31:06 · 587 阅读 · 0 评论 -
统治世界的十大算法
软件正在统治世界。而软件的核心则是算法。算法千千万万,又有哪些算法属于“皇冠上的珍珠”呢?Marcos Otero给出了他的看法。 什么是算法? 通俗而言,算法是一个定义明确的计算过程,可以一些值或一组值作为输入并产生一些值或一组值作为输出。因此算法就是将输入转为输出的一系列计算步骤。软件正在统治世界。而软件的核心则是算法。算法千千万万,又有哪些算法属于“皇冠上的珍珠”呢?Marcos原创 2017-07-22 20:50:49 · 355 阅读 · 0 评论 -
sparkR介绍及安装
SparkR是AMPLab发布的一个R开发包,为Apache Spark提供了轻量的前端。SparkR提供了Spark中弹性分布式数据集(RDD)的API,用户可以在集群上通过R shell交互性的运行job。例如,我们可以在HDFS上读取或写入文件,也可以使用 lapply 来定义对应每一个RDD元素的运算。123sc "l原创 2017-08-02 09:17:01 · 352 阅读 · 0 评论 -
神经网络系列讲解之离散型Hopfield网络
这个真心不错,有sim函数的介绍,连我借的图书馆的书上介绍的都很少,只知道粘程序。。。转自http://www.matlabsky.com/thread-9234-1-1.htmlHopfield网络及学习算法最初是由美国物理学家J.J Hopfield于1982年首先提出的,曾经为人工神经网络的发展进程开辟了新的研究途径。它利用与阶层型神经网络不同的结构特征和学习方法,模拟生物神经网原创 2017-08-10 09:28:30 · 2237 阅读 · 1 评论 -
SAS进阶《深入分析SAS》之数据汇总和展现
SAS进阶《深入分析SAS》之数据汇总和展现1. 通过Print过程制作报表proc print ;run;选项:obs=修改观测序号列标签noobs不显示观测序列号id语句在输出中取代观测序列var选择输出的变量where语句选择输出的观测总结如下: proc print data=数据集; id 变量1; var 变量1;原创 2017-08-03 09:38:40 · 665 阅读 · 0 评论 -
机器学习的决策树介绍
概述:机器学习是当今科技世界的一个时髦词汇,特别是对于那些相信某一天机器人会取代我们的工作并最终统治全世界的人来说,这个词汇包含了趣味,挑战,困惑甚至恐怖。不管喜欢与否,我们都需要适当地在生活中引入一些智能的东西,它能够帮助我们在一瞬间解决最基本的日常问题。机器学习是计算机科学的一个分支,它使计算机能够在没有编程的情况下进行学习。—— 亚瑟·塞缪尔,1959原创 2017-08-18 09:08:22 · 487 阅读 · 0 评论 -
计算机图形学
计算机图形学理解与使用Shader入门(一) : http://blog.csdn.net/battletiger/article/details/76851869引言很多搞Unity的同僚都不会看重计算机图形学的提升,因为大一点的公司都会有专业的人来负责这方面的工作,也就是公司的技术美术工程师,我认为,计算机图形学虽不是Unity工程师的必备知识,但是能够很好的理解Shade原创 2017-08-11 09:21:46 · 900 阅读 · 0 评论 -
各种加密算法比较
算法选择:对称加密AES,非对称加密: ECC,消息摘要: MD5,数字签名:DSA对称加密算法(加解密密钥相同)名称密钥长度运算速度安全性资源消耗DES56位较快低中3DES112位或168位慢原创 2017-08-04 09:15:32 · 479 阅读 · 0 评论 -
pygorithm: 一个用于学习重要算法的Python模块
这是一个能够随时学习重要算法的Python模块,纯粹是为了教学使用。特点易于使用容易理解的文档快速获取算法的源代码随时获取时间复杂度安装仅需在终端中执行以下命令:pip3 install pygorithm*如果你使用的是Python 2.7,请使用pip来安装。如果存在用户权限的限制,你可能需要使用pip install --user pygorith原创 2017-08-13 09:56:40 · 574 阅读 · 0 评论 -
BP神经网络:图片的分割和规范化:《Python》系列。
,本文属于转载博客,感谢原创:BP神经网络:图片的分割和规范化:《Python》系列。图像预处理使用下图(后方称为 SAMPLE_BMP)作为训练和测试数据来源,下文将讲述如何将图像转换为训练数据。灰度化和二值化在字符识别的过程中,识别算法不需要关心图像的彩色信息。因此,需要将彩色图像转化为灰度图像。经过灰度化处理后的图像中还包含有背景信息。因此,我们还得进一步处理原创 2017-08-05 20:15:45 · 1449 阅读 · 0 评论 -
大数据建模 需要了解的九大形式
数据挖掘是利用业务知识从数据中发现和解释知识(或称为模式)的过程,这种知识是以自然或者人工形式创造的新知识。当前的数据挖掘形式,是在20世纪90年代实践领域诞生的,是在集成数据挖掘算法平台发展的支撑下适合商业分析的一种形式。也许是因为数据挖掘源于实践而非 理论,在其过程的理解上不太引人注意。20世纪90年代晚期发展的CRISP-DM,逐渐成为数据挖掘过程的一种标准化过程,被越来越多的数据挖原创 2017-07-29 08:52:49 · 11079 阅读 · 0 评论 -
MATLAB 2015B 破解版 安装详细教程
ATLAB 2015B 在前些日子发布了,新增了不少特性,混合编程功能支持 visual studio 2015, 还自带编译器MinGW,修复了2015a存在的一些bug,非常让人期待。工具/原料Windows 7 64位操作系统MATLAB 2015B 破解版百度云下载链接: http://pan.baidu.com/s/1qW7原创 2017-08-07 09:13:59 · 5611 阅读 · 1 评论 -
机器学习教材中的 7 大经典问题
如果希望了解机器学习,或者已经决定投身机器学习,你会第一时间找到各种教材进行充电,同时在心中默认:书里讲的是牛人大神的毕生智慧,是正确无误的行动指南,认真学习就能获得快速提升。但实际情况是,你很可能已经在走弯路。科技发展很快,数据在指数级增长,环境也在指数级改变,因此很多时候教科书会跟不上时代的发展。有时,即便是写教科书的人,也不见得都明白结论背后的“所以然”,因此有些结论就会落后于时代。原创 2017-08-28 09:37:04 · 314 阅读 · 0 评论 -
最大熵模型总结
基本思想在只掌握了关于未知分布的部分信息的情况下,符合已知知识分布的概率分布可能有多个,但是熵值最大的概率分布最真实低反映了事件的分布情况。最大熵原理指出,当我们需要对一个随机事件的概率分布进行预测时,我们的预测应当满足全部已知的条件,而对未知的情况不要做任何主观假设。在这种情况下,概率分布最均匀,预测的风险最小。因为这时概率分布的信息熵最大,所以人们称这种模型叫“最大熵模型”。我们常说,原创 2017-08-28 09:37:49 · 345 阅读 · 0 评论 -
码农不识贝叶斯,虽知数据也枉然
数据的重要性毋庸置疑,但是如何让数据产生价值呢?对一个全栈老码农而言,经常在开发或者研发管理的时候遇到各种预测、决策、推断、分类、检测、排序等诸多问题。面对“你的代码还有bug么?”这样的挑战,一种理智的回答是,我们已经执行了若干测试用例,代码中存在bug的可能性是百分之零点几。也就是说,我们对当前程序中没有bug的信心是百分之九十九点几。这实际上就是一直贝叶斯思维,或者说使用了贝叶斯方法原创 2017-08-28 09:37:59 · 265 阅读 · 0 评论 -
一个机器学习算法工程师的基本素质~
1. 前言本来这篇标题我想的是算法工程师的技能,但是我觉得要是加上机器学习在标题上,估计点的人会多一点,所以标题成这样了,呵呵,而且被搜索引擎收录的时候多了一个时下的热门词,估计曝光也会更多点。不过放心,文章没有偏题,我们来说正经的。今天就说说机器学习这个最近两年计算机领域最火的话题,这不是一篇机器学习的技术文章,只是告诉大家机器学习里面的坑实在是太多,而且很多还没入门或者刚刚入门原创 2017-08-28 09:38:38 · 624 阅读 · 0 评论