深度学习
DemonHunter211
这个作者很懒,什么都没留下…
展开
-
深度神经网络(DNN) 向前传播
深度神经网络(Deep Neural Networks, 以下简称DNN)是深度学习的基础,而要理解DNN,首先我们要理解DNN模型,下面我们就对DNN的模型与前向传播算法做一个总结。1. 从感知机到神经网络 在感知机原理小结中,我们介绍过感知机的模型,它是一个有若干输入和一个输出的模型,如下图: 输出和输入之间学习到一个线性关系,得到中间输出结果:z=∑i=1mwixi+bz=∑i=1mwixi+b 接着是一个神经元激活函数:sign(z)={−11z.原创 2020-11-30 11:40:00 · 1082 阅读 · 0 评论 -
安装TensorFlow2.0
pip install tensorflow==2.0.0-alpha0-i https://pypi.tuna.tsinghua.edu.cn/simplepip install keras -ihttps://pypi.tuna.tsinghua.edu.cn/simple查看tensorflow版本,可以在终端输入查询命令如下:pythonimport tenso...原创 2020-04-08 09:32:15 · 283 阅读 · 0 评论 -
keras 和 pytorch
本文将介绍Keras与Pytorch的4个不同点以及为什么选择其中一个库的原因。KerasKeras本身并不是一个框架,而是一个位于其他深度学习框架之上的高级API。目前它支持TensorFlow、Theano和CNTK。Keras的优点在于它的易用性。这是迄今为止最容易上手并快速运行的框架。定义神经网络是非常直观的,因为使用API可以将层定义为函数。PytorchPytorc...原创 2020-04-07 17:05:27 · 1092 阅读 · 0 评论 -
TensorFlow与PyTorch之争,哪个框架最适合深度学习
谷歌的 Tensorflow 与 Facebook 的 PyTorch 一直是颇受社区欢迎的两种深度学习框架。那么究竟哪种框架最适宜自己手边的深度学习项目呢?本文作者从这两种框架各自的功能效果、优缺点以及安装、版本更新等诸多方面给出了自己的建议。如果你在读这篇文章,那么你可能已经开始了自己的深度学习之旅。如果你对这一领域还不是很熟悉,那么简单来说,深度学习使用了「人工神经网络」,这是一种类似大...原创 2020-03-20 11:21:00 · 3587 阅读 · 0 评论 -
XGBClassifier 参数解释
from xgboost import XGBClassifierXGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step...原创 2020-02-25 09:56:49 · 17945 阅读 · 1 评论 -
白话神经网络
人工智能是这几年非常火的技术,上至九十九下至刚会走都对人工智能或多或少的了解。神经网络是人工智能的核心,也就是说没有神经网络就没有人工智能,那么这篇文章就带大家学习一下神经网络相关的知识。因为这篇文章没有数学公式、没有代码,旨在帮助读者快速掌握神经网络的核心知识,因此起名叫极简神经网络。零、什么神经网络概念所谓神经网络简单说就是包含多个简单且高度相连的元素的系统,每个元素都会根据输入来处理...转载 2020-02-19 15:27:27 · 367 阅读 · 1 评论 -
初探梯度下降之随机梯度下降(SGD)
前言本文适用于曾经使用过Keras,tensorflow,并具备一定深度学习概念的人。由于tensorflow正在完成2.0的转型,越来越多的研究转向Pytorch,因此有必要快速入门一下Pytorch。相比较0基础的人,有一定深度学习基础的同学能够快速的将pytorch和Keras等其他深度学习框架概念相对应,更快的学习pytorch,并将自己的研究迁移到pytorch上来。本文就是完成此目的...原创 2020-02-15 23:09:24 · 522 阅读 · 0 评论 -
如何用keras实现deepFM
前言DeepFM,Ctr预估中的大杀器,哈工大与华为诺亚方舟实验室荣耀出品,算法工程师面试高频考题,有效的结合了神经网络与因子分解机在特征学习中的优点:同时提取到低阶组合特征与高阶组合特征,这样的称号我可以写几十条出来,这也说明了DeepFM确实是一个非常值得手动撸一边的算法。当然,早就有一票人写了一车封装好的deepFM的模型,大家随便搜搜肯定也能搜到,既然这样,我就不...原创 2020-02-11 23:30:04 · 689 阅读 · 0 评论 -
推荐系统遇上深度学习(三)--DeepFM模型理论和实践
1、背景特征组合的挑战对于一个基于CTR预估的推荐系统,最重要的是学习到用户点击行为背后隐含的特征组合。在不同的推荐场景中,低阶组合特征或者高阶组合特征可能都会对最终的CTR产生影响。之前介绍的因子分解机(Factorization Machines, FM)通过对于每一维特征的隐变量内积来提取特征组合。最终的结果也非常好。但是,虽然理论上来讲FM可以对高阶特征组合进行建模,但实际上因为...原创 2020-02-11 23:27:54 · 255 阅读 · 0 评论 -
最全知识图谱综述: 概念以及构建技术
【导读】知识图谱技术是人工智能技术的组成部分,其强大的语义处理和互联组织能力,为智能化信息应用提供了基础。我们专知的技术基石之一正是知识图谱-构建AI知识体系-专知主题知识树简介。下面我们特别整理了关于知识图谱的技术全面综述,涵盖基本定义与架构、代表性知识图谱库、构建技术、开源库和典型应用。引言随着互联网的发展,网络数据内容呈现爆炸式增长的态势。由于互联网内容的大规模、异质多元、组织结构松...原创 2020-01-09 16:38:17 · 2082 阅读 · 0 评论 -
Python分词、情感分析工具——SnowNLP
SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob不同的是,这里没有用NLTK,所有的算法都是自己实现的,并且自带了一些训练好的字典。注意本程序都是处理的unicode编码,所以使用时请自行decode成unicode。安装...原创 2020-01-08 09:59:39 · 2018 阅读 · 0 评论 -
TensorFlow2.0 Keras介绍
Keras简介keras现在是一个非常流行的工具库,包括tensorflow已经把keras合并到了自己的主代码当中了,大家可以直接tf.keras就可以直接调用其中的工具库了。单独讲keras的原因是因为keras有他独特的应用场景如实验室、数据竞赛等小型环境中,使用keras,工程师们可以将更多时间花在设计网络模型上而不是coding上,而且keras是所有工具库当中最容易上手的工具库之一...原创 2020-01-08 09:42:37 · 898 阅读 · 0 评论 -
Keras Pytorch大比拼
对于许多数据科学家、工程师和开发人员来说,TensorFlow是他们深度学习框架的第一选择。TensorFlow 1.0于2017年2月发布,至少可以说,它不是非常用户友好。在过去几年中,两个主要的深度学习库已经获得了巨大的普及,主要是因为它们比TensorFlow更容易使用:Keras和Pytorch。译者注:TensorFlow 2.0已经将keras作为主要API,在TensorF...原创 2020-01-08 09:36:01 · 263 阅读 · 0 评论 -
Keras好还是PyTorch牛?
TensorFlow 是很多科学家、工程师和开发人员的首个深度学习框架。虽然 TensorFlow 1.0 早在 2017 年 2 月就发布了,但使用过程中对用户不太友好。过去几年里,Keras 和 PyTorch 日益成为广受用户欢迎的两种深度学习库,因为它们使用起来比 TensorFlow 简单多了。本文将分别对 Keras 和 PyTorch 的四个方面进行比较,你可以根据两种框架的...原创 2020-01-08 09:33:20 · 507 阅读 · 0 评论 -
HMM、MEMM、CRF模型比较
HMM模型中存在两个假设:一是输出观察值之间严格独立,二是状态的转移过程中当前状态只与前一状态有关(一阶马尔可夫模型)。MEMM模型克服了观察值之间严格独立产生的问题,但是由于状态之间的假设理论,使得该模型存在标注偏置问题。CRF模型解决了标注偏置问题,去除了HMM中两个不合理的假设,当然,模型相应得也变复杂了。原创 2017-07-14 09:35:40 · 616 阅读 · 1 评论 -
MDN混合密度神经网络
原文地址:http://blog.otoro.net/2015/11/24/mixture-density-networks-with-tensorflow/ 假设我们用神经网络拟合这些数据,结果如下,效果不错。 But,只适用于1输入1输出(one-to-noe),多输入1输出(many to one)的情况,如果我们将数据集倒转(invert)一下 我们看到训转载 2017-07-18 13:58:19 · 2388 阅读 · 0 评论 -
CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构的区别
先说DNN,从结构上来说他和传统意义上的NN(神经网络)没什么区别,但是神经网络发展时遇到了一些瓶颈问题。一开始的神经元不能表示异或运算,科学家通过增加网络层数,增加隐藏层可以表达。并发现神经网络的层数直接决定了它对现实的表达能力。但是随着层数的增加会出现局部函数越来越容易出现局部最优解的现象,用数据训练深层网络有时候还不如浅层网络,并会出现梯度消失的问题。我们经常使用sigmoid函数作为神经元原创 2017-07-23 20:30:45 · 689 阅读 · 0 评论 -
使用pip安装tensorflow 0.80,python 使用tensorflow 0.80遇到的问题及处理方法
业务需要使用谷歌的深度学习框架tensorflow,安装过程中遇到很多问题,真的很难处理,特此记录。CentOS6.4tensorflow 0.80Python-2.7.111、卸载原来的pip2、下载个pip 网站https://pip.pypa.io/en/latest/installing/3、yum install python-deve原创 2017-08-08 09:19:25 · 478 阅读 · 0 评论 -
AI大行其道,你准备好了吗?—谨送给徘徊于转行AI的程序员
前言 近年来,随着 Google 的 AlphaGo 打败韩国围棋棋手李世乭之后,机器学习尤其是深度学习的热潮席卷了整个IT界。所有的互联网公司,尤其是 Google 微软,百度,腾讯等巨头,无不在布局人工智能技术和市场。百度,腾讯,阿里巴巴,京东,等互联网巨头甚至都在美国硅谷大肆高薪挖掘人工智能人才。现在在北京,只要是机器学习算法岗位,少则月薪 20k,甚至100k 以上……转载 2017-07-18 10:38:31 · 311 阅读 · 0 评论 -
caffe 安装配置(CentOS 6.5 + 无GPU)
在没有GPU的情况下把caffe跑起来。1. 安装CUDA设置命令行模式重新启动:http://blog.sina.com.cn/s/blog_990865340102vent.htmlhttp://developer.download.nvidia.com/compute/cuda/6_5/rel/installers/cuda_6.5.14_linu原创 2017-07-17 15:11:53 · 241 阅读 · 0 评论 -
TensorFlow 智能机器人原理与实现
本文来自作者 李嘉璇 在 GitChat 上的精彩分享,「阅读原文」看看大家与作者交流了哪些问题第一部分讲解自然语言处理的原理,第二部分讲解聊天机器人的实现原理,解决方案及挑战,最后以 seq2seq+Attention 机制讲解模型结构。第三部分讲解如何从0开始训练一个聊天机器人。一、自然语言处理的原理人工智能理解自然语言的原理,要回答这个问题,首先需要界定下原创 2017-08-16 11:14:00 · 4620 阅读 · 0 评论 -
降维
当特征选择完成后,可以直接训练模型了,但是可能由于特征矩阵过大,导致计算量大,训练时间长的问题,因此降低特征矩阵维度也是必不可少的。但不要盲目降维,当你在原数据上跑到了一个比较好的结果,又嫌它太慢的时候才进行降维,不然降了半天白降了。常见的降维方法有主成分分析法(PCA)和线性判别分析(LDA),线性判别分析本身也是一个分类模型。PCA和LDA有很多的相似点,其本质是要将原始的样本映射到维度更原创 2017-08-17 11:37:24 · 394 阅读 · 0 评论 -
人工智能在医疗产业的五大应用场景及典型案例
近年来,智能医疗在国内外的发展热度不断提升。有人提出,“尽管安防和智能投顾最为火热,但AI在医疗领域可能会率先落地。”一方面,图像识别、深度学习、神经网络等关键技术的突破带来了人工智能技术新一轮的发展。大大推动了以数据密集、知识密集、脑力劳动密集为特征的医疗产业与人工智能的深度融合。另一方面,随着社会进步和人们健康意识的觉醒,人口老龄化问题的不断加剧,人们对于提升医疗技术、延长人类原创 2017-08-18 09:07:36 · 31887 阅读 · 0 评论 -
神经网络入门
眼下最热门的技术,绝对是人工智能。人工智能的底层模型是"神经网络"(neural network)。许多复杂的应用(比如模式识别、自动控制)和高级模型(比如深度学习)都基于它。学习人工智能,一定是从它开始。什么是神经网络呢?网上似乎缺乏通俗的解释。前两天,我读到 Michael Nielsen 的开源教材《神经网络与深度学习》(Neural Networks and转载 2017-08-18 09:07:53 · 466 阅读 · 0 评论 -
人工智能之机器学习算法体系汇总
参加完2017CCAI,听完各位专家的演讲后受益匪浅。立志写“人工智能之机器学习”系列,此为开篇,主要梳理了机器学习算法体系,人工智能相关趋势,Python与机器学习,以及结尾的一点感想。Github开源机器学习系列文章及算法源码1.人工智能之机器学习体系汇总【直接上干货】此处梳理出面向人工智能的机器学习方法体系,主要体现机器学习方法和逻辑关系,理清机器学习脉络,后续文章会原创 2017-08-04 09:14:56 · 487 阅读 · 0 评论 -
科技互联网中,现如今什么技术最火?
IT 技术正在以惊人的速度发展,2016 年被热捧的技术现在来看可能已经过时了。用户决定产品的生死,公司需要随时根据用户需求调整其服务内容,并且用户需求千变万化,在很多时候是无法预知的。在本文中,我们将介绍科技领域中最热门、最有前景的趋势。人工智能AI 正在震撼现代 IT 世界,公司之间进行着激烈的相互竞争,聘请和霸占着行业内最优秀的专业人才。Faceboo原创 2017-08-13 09:57:11 · 590 阅读 · 0 评论 -
“空中交巡警”+智能信号灯 渝中智慧城市建设焕发新活力
在寸土寸金的城市中心,应该怎么样优化交通?渝中区给出了自己的答案:通过构建智慧交通体系。一方面,通过智慧交通综合管理平台消堵保畅;另一方面通过建设地下环道改善区域交通。可喜的是,智慧交通建设以来,取得了巨大的成效。而智慧城市的建设,正在让渝中区这个“老牌商圈”焕发新的活力。 行 车 建智慧交通 通行效率显著提升 8月16日上午10点,两路口环道,车辆有序通行,一路畅通。渝中原创 2017-08-19 21:45:57 · 850 阅读 · 0 评论 -
你要努力学习了:这十大职业将来可能会被计算机替代
网易科技讯 4月25日,据国外媒体报道,你可能看到或听说过很多次,机器人或算法正接管人类工作。在这种趋势下,首先遭殃的可能就是蓝领工人,比如工厂工人和出租车司机等。你可能在心理上有种优越感,因为你的“职业”依然是安全的,不会被“外包”给计算机。但不要高兴得太早,越来越多更为复杂的算法和机器学习正在证明:此前只能由人类胜任的工作也面临着机器的威胁。波士顿咨询集团已经预测,到2025年原创 2017-08-05 20:15:04 · 4363 阅读 · 0 评论 -
最近比较火的10篇大数据文章,看看你错过了哪篇?
原2017.08.11AI科技大本营翻译 | AI科技大本营(rgznai100)参与 | ShawnSicara团队精挑细选,了10篇在今年7月发表的大数据相关文章(Sicara是一家从事Agile数据开发的公司,总部位于巴黎),我们一起来看一下把。本文相继刊载了一些实用文章、科研原创 2017-08-14 09:04:19 · 5051 阅读 · 0 评论 -
如何走向真正的人工智能?
“人工智能”这个被一时间带火的“热词”,已成为当下最火热的产业之一,从苹果Siri到谷歌的AlphaGo等,AI的大规模运用,将给当下的社会生产力带来爆炸式的增长,我们曾经憧憬的未来世界,都在人工智能的撬动下,已悄然掀开了序幕。 人工智能是新一轮产业变革的核心驱动力,也是当前各路资本关注的焦点领域。以特色产业和新兴产业集聚为主要特征的特色小镇,是我国城镇化进程中的全新尝试和探索,也蕴藏着原创 2017-08-21 09:15:37 · 402 阅读 · 0 评论 -
【最新】IBM 深度学习框架PowerAI,将训练时间从几周变成几小时
智元启动 2017 最新一轮大招聘:COO、总编、主笔、运营总监、视觉总监等8大职位全面开放。新智元为COO和执行总编提供最高超百万的年薪激励;为骨干员工提供最完整的培训体系、高于业界平均水平的工资和奖金。加盟新智元,与人工智能业界领袖携手改变世界。简历投递:jobs@aiera.com.cn HR 微信:13552313024【新智元导读】IBM Power Syst原创 2017-08-06 20:14:13 · 1153 阅读 · 0 评论 -
自然语言情感分析简介
情感分析无处不在,它是一种基于自然语言处理的分类技术。其主要解决的问题是给定一段话,判断这段话是正面的还是负面的。例如在亚马逊网站或者推特网站中,人们会发表评论,谈论某个商品、事件或人物。商家可以利用情感分析工具知道用户对自己的产品的使用体验和评价。当需要大规模的情感分析时,肉眼的处理能力就变得十分有限了。情感分析的本质就是根据已知的文字和情感符号,推测文字是正面的还是负面的。处理好了情感分析,可原创 2017-08-25 09:10:50 · 915 阅读 · 0 评论 -
对AI的理解及应用的思考
1. 概述1.1 常用术语1.2 AI学习方式及地位序号学习方法地位1强化学习(Reinforcement Learning)犹如蛋糕上的一颗樱桃2监督学习(Supervised Learning)犹如蛋糕外的一层糖霜3无监督学习/预测学习 (Un原创 2017-08-25 09:11:44 · 2174 阅读 · 0 评论 -
本征向量、PCA和熵的基础教程
1. 简介 本页主要以通俗语言和少量数学公式介绍本征向量及其与矩阵之间的关系,并且在此基础上解释协方差、主成分分析和信息熵。 本征向量(eigenvector)一词中的“本征(eigen)”来自德语,原意为a?自己的a。例如,在德语中,a?mein eigenes Autoa的意思是?a?我自己的车a。所以“本征”表示了两件事物之间的一种特殊关系。这是一种特定、原创 2017-08-25 09:11:55 · 1454 阅读 · 0 评论 -
【转知乎】人工智能会是泡沫吗?
两个高票回答我觉得都挺有道理,周一大早可以先干杯鸡汤。1.作者:姚冬链接:https://www.zhihu.com/question/53128666/answer/208724850来源:知乎一定是泡沫,而且这个泡沫一定会破但是,最厉害的就是这个但是,泡沫破裂不表示人工智能完蛋。别的行业不太了解,至少IT行业是个经常性泡沫原创 2017-08-15 12:47:48 · 885 阅读 · 0 评论 -
深度 | TensorFlow开源一周年:这可能是一份最完整的盘点
TensorFlow 宣布开源已经过去一年时间了。在谷歌的支持下,TensorFlow 成为了 GitHub 上今年最受欢迎的机器学习开源项目(据 GitHub 开源报告)。今天,Google Research Blog 上发表了一篇 TensorFlow 开源一周年的介绍文章,我们也对之前谷歌在 TensorFlow 框架上展开的项目进行了盘点(谷歌所公开的)。自 Google原创 2017-09-04 09:06:24 · 2210 阅读 · 0 评论 -
深度学习框架的介绍与比较(Caffe, TensorFlow, MXNet, Torch, Theano)
在这里,我将会介绍当前比较主流的5种深度学习框架,包括 Caffe, TensorFlow, MXNet, Torch, Theano,并对这些框架进行分析。首先对这些框架进行总览。库名称开发语言速度灵活性文档适合模型平台上手难易Caffec++/cu原创 2017-09-04 09:07:42 · 383 阅读 · 0 评论 -
Python、R、Java、 C++ 等:从业界反馈看机器学习语言趋势
摘要: 对于开发者来说,掌握什么编程语言能更容易找到机器学习或者数据科学的工作? 这是个许多人关心的问题,非常实际,也在许多论坛被翻来覆去地讨论过。非常显著的是 “Python 是大趋势”这一论调,似乎它即将在机器学习领域一统天下。对于开发者来说,掌握什么编程语言能更容易找到机器学习或者数据科学的工作?这是个许多人关心的问题,非常实际,也在许多论坛被翻来覆去地讨论过。非原创 2017-09-04 09:11:09 · 537 阅读 · 0 评论 -
每秒 180 万亿次,谷歌新一代 TPU 三大变化值得关注
在人工智能领域,训练一个先进的机器学习模型需要投入大量的计算资源。随着机器学习算法越来越多的应用在各个领域并表现出优越的性能,对于机器学习算法专业硬件的需求,也变得越来越强烈。2016 年,谷歌首次公布了专为加速深层神经网络运算能力而研发的芯片——TPU,在计算性能和能耗指标上,TPU 的表现都远远优于传统 CPU、GPU 组合。(我们在上个月也曾发布过一篇文章,解析 TPU 耀眼成绩背后原创 2017-09-04 09:12:01 · 503 阅读 · 0 评论 -
用 CNTK 搞深度学习 (一) 入门
Computational Network Toolkit (CNTK) 是微软出品的开源深度学习工具包。本文介绍CNTK的基本内容,如何写CNTK的网络定义语言,以及跑通一个简单的例子。 根据微软开发者的描述,CNTK的性能比Caffe,Theano, TensoFlow等主流工具都要强。它支持CPU和GPU模式,所以没有GPU,或者神经网络比较小的实验,直接用CPU版的CNTK跑就行了原创 2017-09-04 09:12:27 · 3001 阅读 · 0 评论