深度 | TensorFlow开源一周年:这可能是一份最完整的盘点

TensorFlow 宣布开源已经过去一年时间了。在谷歌的支持下,TensorFlow 成为了 GitHub 上今年最受欢迎的机器学习开源项目(据 GitHub 开源报告)。今天,Google Research Blog 上发表了一篇 TensorFlow 开源一周年的介绍文章,我们也对之前谷歌在 TensorFlow 框架上展开的项目进行了盘点(谷歌所公开的)

自 Google Brain 团队开源 TensorFlow 以来已经过去了一整年的时间——这是 TensorFlow 成果丰硕的一年,它帮助加速了对机器学习的研究,同时也助力科技为人们带来更好的服务。基于 TensorFlow 的项目在这一年里面层出不穷:超过 480 人为 TensorFlow 做出了直接贡献,其中包括谷歌自己人、外部研究者、独立程序开发者、学生和其它公司的资深开发者。现在,TensorFlow 已经成为了 GitHub 上最受欢迎的机器学习项目。

过去 12 个月,TensorFlow 项目收到了超过 10,000 次 commits,实现了很大的性能提升,增加了对分布式训练、iOS、树莓派开发板的支持,并且还实现了 TensorFlow 与已被广泛使用的大数据架构的整合。TensorFlow 还增加了对 Go、Rust 和 Haskell 的支持。除此之外,谷歌还发布了当前表现最好的图像分类模型 Inception-ResNet-v2,并且还回答了 GitHub、StackOverflow 和 TensorFlow mailing list 上数以千计的问题。

在谷歌,TensorFlow 也支持着从大规模产品功能到探索性研究等许多项目。谷歌最近宣布的在谷歌翻译上的重大进展就使用了 TensorFlow(以及张量处理单元(TPU/ Tensor Processing Units,这是一种可用于 TensorFlow 的特别的硬件加速器)。Magenta 项目正在研究可以生成音乐旋律的基于强化学习的新模型,另外最近还有一位博士学生和 Google Brain 团队合作开发了一个可以自动实现多种艺术风格交叉的 TensorFlow 项目。,最近他们在 TensorFlow 上开发出了基于原始音频生成语音和音乐的模型 WaveNet。

除了上面谈到的项目机器之心有过关注之外,一年以来我们也见证了 TensorFlow 如何成为了 GitHub 上最受欢迎的机器学习开源项目,详尽的追踪了谷歌在 TensorFlow 框架上进行的各类研究、开源的项目,这些研究涉及到自然语言处理、机器翻译、图像描述、图像分类等等。

在官方介绍中,谷歌如此描述 TensorFlow 系统,「确保 TensorFlow 能够满足从研究到生产的各个层面的需求:从最小的树莓派开发板一直到装备了大量 GPU 或 TPU 的服务器中心。」

不久之前,也曾表示,市面上很多新产品和服务都在使用 Deep Learning,但是这只是一项现有的、能满足当下需求的技术。他认为更重要的是更多的研究人员和科学家能在更广的维度和视野下继续深入研究,这样才能发现与时俱进,发现更新的技术来满足这一领域下一阶段的更多需求。

在谈到 Google 开源 TensorFlow 的意义时,Greg 阐述道:

「对于人工智能,我想强调的是它不是一个具体的可以包装销售的产品。它实际上是一个工具,软件工程师以及其他有创造力的人们可以使用这个工具来制造和开发新的产品和服务。而 TensorFlow 把这些 Google 正在使用的基本的工具开放给公众使用。」

未来人工智能领域的相关产品,除了 TensorFlow 之外,Google 也打算把自己开发的平台通过云服务共享给公众使用,通过这种云机器学习,其他开发者可以开发和实现自己的机器学习构想,就像自己在 Google 中研发一样。他们可以通过 TensorFlow 使用谷歌提供的免费软件和工具,也可以用云服务运行他们自己构建的机器学习系统。

「我们也会通过 API 向开发者提供一些预置好的机器学习的子系统,这样开发者只需要再添加几行简单的代码就可以实现比如翻译、图片识别等技术。这样开发者并不需要成为机器学习的专家,就能开发自己的机器学习应用的产品。」

所以,我们可以看到 TensorFlow 不仅仅是一个开源项目,谷歌正在努力构建围绕 TensorFlow 的包含软件和机器学习模型的生态系统。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值