机器学习
KK的任意门
改变,从去影响开始。
展开
-
过拟合与欠拟合
参考链接:https://blog.csdn.net/xuaho0907/article/details/88649141 fitting:拟合,就是说这个曲线能不能很好的描述这个样本,有比较好的泛化能力 过拟合(OverFititing):太过贴近于训练数据的特征了,在训练集上表现非常优秀,近乎完美的预测/区分了所有的数据,但是在新的测试集上却表现平平。 欠拟合(UnderFitting)...原创 2020-04-20 22:11:05 · 166 阅读 · 0 评论 -
机器学习中标称型数据和数值型数据的区别
这两种数据在监督学习的分类一章经常有说到 标称型:一般在有限的数据中取,而且只存在‘是’和‘否’两种不同的结果(一般用于分类) 数值型:可以在无限的数据中取,而且数值比较具体化,例如4.02,6.23这种值原创 2017-08-29 10:42:56 · 1780 阅读 · 0 评论