POJ Finding Nemo 2049 (bfs)

4 篇文章 0 订阅


Finding Nemo
Time Limit: 2000MS Memory Limit: 30000K
Total Submissions: 9049 Accepted: 2119

Description

Nemo is a naughty boy. One day he went into the deep sea all by himself. Unfortunately, he became lost and couldn't find his way home. Therefore, he sent a signal to his father, Marlin, to ask for help. 
After checking the map, Marlin found that the sea is like a labyrinth with walls and doors. All the walls are parallel to the X-axis or to the Y-axis. The thickness of the walls are assumed to be zero. 
All the doors are opened on the walls and have a length of 1. Marlin cannot go through a wall unless there is a door on the wall. Because going through a door is dangerous (there may be some virulent medusas near the doors), Marlin wants to go through as few doors as he could to find Nemo. 
Figure-1 shows an example of the labyrinth and the path Marlin went through to find Nemo. 

We assume Marlin's initial position is at (0, 0). Given the position of Nemo and the configuration of walls and doors, please write a program to calculate the minimum number of doors Marlin has to go through in order to reach Nemo.

Input

The input consists of several test cases. Each test case is started by two non-negative integers M and N. M represents the number of walls in the labyrinth and N represents the number of doors. 
Then follow M lines, each containing four integers that describe a wall in the following format: 
x y d t 
(x, y) indicates the lower-left point of the wall, d is the direction of the wall -- 0 means it's parallel to the X-axis and 1 means that it's parallel to the Y-axis, and t gives the length of the wall. 
The coordinates of two ends of any wall will be in the range of [1,199]. 
Then there are N lines that give the description of the doors: 
x y d 
x, y, d have the same meaning as the walls. As the doors have fixed length of 1, t is omitted. 
The last line of each case contains two positive float numbers: 
f1 f2 
(f1, f2) gives the position of Nemo. And it will not lie within any wall or door. 
A test case of M = -1 and N = -1 indicates the end of input, and should not be processed.

Output

For each test case, in a separate line, please output the minimum number of doors Marlin has to go through in order to rescue his son. If he can't reach Nemo, output -1.

Sample Input

8 9
1 1 1 3
2 1 1 3
3 1 1 3
4 1 1 3
1 1 0 3
1 2 0 3
1 3 0 3
1 4 0 3
2 1 1
2 2 1
2 3 1
3 1 1
3 2 1
3 3 1
1 2 0
3 3 0
4 3 1
1.5 1.5
4 0
1 1 0 1
1 1 1 1
2 1 1 1
1 2 0 1
1.5 1.7
-1 -1

Sample Output

5
-1


好难

把整个区域抽象为网格,每个网格为面积为1,用网格的左下角坐标表示网格,再用一个三维数组表示墙或者门,表示这个网格上方或者右方,不要设置四个方向,会爆内存,然后就开始bfs,如果x,y超过[1,199],那么这个区间外面就没有墙和门,找出所有的出口的步数,选一个最小的。

注意墙和门在[1,199],但人可能在这个区间外面,那样步数就为0.


#include <stdio.h>
#include <string.h>
#include <queue>
#include <iostream>
#include <algorithm>
using namespace std;
#define inf 0x3f3f3f3f
int min1;
int fx[]={0,1,0,-1};
int fy[]={1,0,-1,0};
int mp[205][205][2],mpp[205][205]; //1右方0上方
int xx,yy;
struct node
{
    int x,y;
    int step;
};
void bfs()
{
    int i;
    queue<node>q;
    while(!q.empty())q.pop();
    memset(mpp,0,sizeof(mpp));
    struct node l,k;
    l.x=xx;
    l.y=yy;
    l.step=0;
    mpp[xx][yy]=1;
    q.push(l);
    min1=inf;
    while(!q.empty())
    {
        k=q.front();
        q.pop();
        if(k.x<=0 || k.x>=199 || k.y<=0 || k.y>=199)//超出边界,找最小
        {
            min1=min(min1,k.step);
            continue;
        }
        for(i=0;i<4;i++)
        {
            int x1=k.x+fx[i];
            int y1=k.y+fy[i];
            if(i==0)
            {
                if(mp[k.x][k.y][0]!=-1 && !mpp[x1][y1] && x1>=0 && y1>=0)
                {
                    struct node tep;
                    tep.x=x1;
                    tep.y=y1;
                    if(mp[k.x][k.y][0]==1)
                    {
                        tep.step=k.step+1;
                    }
                    else
                    {
                        tep.step=k.step;
                    }
                    mpp[x1][y1]=1;
                    q.push(tep);
                }

            }
            if(i==1)
            {
                if(mp[k.x][k.y][1]!=-1 && !mpp[x1][y1] && x1>=0 && y1>=0)
                {
                    struct node tep;
                    tep.x=x1;
                    tep.y=y1;
                    if(mp[k.x][k.y][1]==1)
                    {
                        tep.step=k.step+1;
                    }
                    else
                    {
                        tep.step=k.step;
                    }
                    mpp[x1][y1]=1;
                    q.push(tep);
                }

            }
            if(i==2)
            {
                if(mp[k.x][k.y-1][0]!=-1 && !mpp[x1][y1] && x1>=0 && y1>=0)
                {
                    struct node tep;
                    tep.x=x1;
                    tep.y=y1;
                    if(mp[k.x][k.y-1][0]==1)
                    {
                        tep.step=k.step+1;
                    }
                    else
                    {
                        tep.step=k.step;
                    }
                    mpp[x1][y1]=1;
                    q.push(tep);
                }

            }
            if(i==3)
            {
                if(mp[k.x-1][k.y][1]!=-1 && !mpp[x1][y1] && x1>=0 && y1>=0)
                {
                    struct node tep;
                    tep.x=x1;
                    tep.y=y1;
                    if(mp[k.x-1][k.y][1]==1)
                    {
                        tep.step=k.step+1;
                    }
                    else
                    {
                        tep.step=k.step;
                    }
                    mpp[x1][y1]=1;
                    q.push(tep);
                }
            }
        }
    }
}
int main()
{
    int n,m,i,j;
    int a,b,c,d;
    /*  1 门 0 空地 -1 墙*/
    while(~scanf("%d%d",&n,&m))
    {
        memset(mp,0,sizeof(mp));
        if(n==-1 && m==-1)break;
        while(n--)
        {
            scanf("%d%d%d%d",&a,&b,&c,&d);
            if(c)//平行y
            {
                for(i=b;i<b+d;i++)
                {
                    mp[a-1][i][1]=-1;//墙
                }
            }
            else//平行x
            {
                for(i=a;i<a+d;i++)
                {
                    mp[i][b-1][0]=-1;
                }
            }
        }
        while(m--)
        {
            scanf("%d%d%d",&a,&b,&c);
            if(c)//平行y
            {
                mp[a-1][b][1]=1;//门
            }
            else//平行x
            {
                mp[a][b-1][0]=1;
            }

        }
        double xxx,yyy;
        scanf("%lf%lf",&xxx,&yyy);
        xx=int(xxx);
        yy=int(yyy);
        if(!(xx>=0 && xx<=199 && yy>=0 && yy<=199))
        {
            printf("0\n");
        }
        else
        {
            bfs();
            if(min1==inf)
            {
                printf("-1\n");
            }
            else
            {
                printf("%d\n",min1);
            }
        }

    }
    return 0;
}




























评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值