谷歌BERT预训练源码解析(二):模型构建

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接: https://blog.csdn.net/weixin_39470744/article/details/84401339
         <!--一个博主专栏付费入口结束-->
        <link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_views-4a3473df85.css">
                                    <div id="content_views" class="markdown_views prism-atom-one-dark">
                <!-- flowchart 箭头图标 勿删 -->
                <svg xmlns="http://www.w3.org/2000/svg" style="display: none;">
                    <path stroke-linecap="round" d="M5,0 0,2.5 5,5z" id="raphael-marker-block" style="-webkit-tap-highlight-color: rgba(0, 0, 0, 0);"></path>
                </svg>
                                        <p></p><div class="toc"><h3><a name="t0"></a>目录</h3><ul><li><a href="#_1" rel="nofollow" target="_self">前言</a></li><li><a href="#_6" rel="nofollow" target="_self">源码解析</a></li><ul><li><a href="#_7" rel="nofollow" target="_self">模型配置参数</a></li><li><a href="#BertModel_22" rel="nofollow" target="_self">BertModel</a></li><li><a href="#word_embedding_131" rel="nofollow" target="_self">word embedding</a></li><li><a href="#embedding_postprocessor_181" rel="nofollow" target="_self">embedding_postprocessor</a></li><li><a href="#Transformer_281" rel="nofollow" target="_self">Transformer</a></li><li><a href="#self_attention_423" rel="nofollow" target="_self">self_attention</a></li></ul><li><a href="#_620" rel="nofollow" target="_self">模型应用</a></li></ul></div><p></p>

前言

BERT的模型主要是基于Transformer架构(论文:Attention is all you need)。它抛开了RNN等固有模式,直接用注意力机制处理Seq2Seq问题,体现了大道至简的思想。网上对此模型解析的资料有很多,但大都千篇一律。这里推荐知乎的一篇《Attention is all you need》解读,我觉得这篇把transformer介绍的非常好。
由于模型最闹心的就是维度问题,维度理清了,理解模型就很容易,所以我在源码中会注释每个操作后tensor的维度信息。
下面开始介绍BERT的模型 modeling.py是怎么建立的,我始终认为读代码和注释是理解的最快方法,所以看代码时如果官方注释有的地方看不懂。请善看中文注释维度信息

源码解析

模型配置参数

" attention_probs_dropout_prob": 0.1,         #乘法attention时,softmax后dropout概率
  "hidden_act": "gelu",         #激活函数
  "hidden_dropout_prob": 0.1,        #隐藏层dropout概率
  "hidden_size": 768,                #隐藏单元数
  "initializer_range": 0.02,          #初始化范围
  "intermediate_size": 3072,      #升维维度
  "max_position_embeddings": 512,     #一个大于seq_length的参数,用于生成position_embedding
  "num_attention_heads": 12,    #每个隐藏层中的attention head数
  "num_hidden_layers": 12,       #隐藏层数
  "type_vocab_size": 2,        #segment_ids类别 [0,1]
  "vocab_size": 30522       #词典中词数

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

这里的输入参数:input_ids,input_mask,token_type_ids对应上篇文章中输出的input_ids,input_mask,segment_ids

BertModel

这部分是总流程,整个modling脚本有900多行代码,所以我列个流程图一部一部走。整体流程如下。首先对input_ids和token_type_ids进行embedding操作,将embedding结果送入Transformer训练,最后得到编码结果。
在这里插入图片描述

def __init__(self,
               config,
               is_training,
               input_ids,
               input_mask=None,
               token_type_ids=None,
               use_one_hot_embeddings=True,
               scope=None):
    """Constructor for BertModel.
    Args:
      config: `BertConfig` instance.
      is_training: bool. rue for training model, false for eval model. Controls
        whether dropout will be applied.
      input_ids: int32 Tensor of shape [batch_size, seq_length].
      input_mask: (optional) int32 Tensor of shape [batch_size, seq_length].
      token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length].
      use_one_hot_embeddings: (optional) bool. Whether to use one-hot word
        embeddings or tf.embedding_lookup() for the word embeddings. On the TPU,
        it is must faster if this is True, on the CPU or GPU, it is faster if
        this is False.
      scope: (optional) variable scope. Defaults to "bert".
    Raises:
      ValueError: The config is invalid or one of the input tensor shapes
        is invalid.
    """
    config = copy.deepcopy(config)
    if not is_training:
      config.hidden_dropout_prob = 0.0
      config.attention_probs_dropout_prob = 0.0
input_shape <span class="token operator">=</span> <span class="token function">get_shape_list</span><span class="token punctuation">(</span>input_ids<span class="token punctuation">,</span> expected_rank<span class="token operator">=</span><span class="token number">2</span><span class="token punctuation">)</span>
batch_size <span class="token operator">=</span> input_shape<span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span>
seq_length <span class="token operator">=</span> input_shape<span class="token punctuation">[</span><span class="token number">1</span><span class="token punctuation">]</span>

<span class="token keyword">if</span> input_mask is None<span class="token punctuation">:</span>
  input_mask <span class="token operator">=</span> tf<span class="token punctuation">.</span><span class="token function">ones</span><span class="token punctuation">(</span>shape<span class="token operator">=</span><span class="token punctuation">[</span>batch_size<span class="token punctuation">,</span> seq_length<span class="token punctuation">]</span><span class="token punctuation">,</span> dtype<span class="token operator">=</span>tf<span class="token punctuation">.</span>int32<span class="token punctuation">)</span>

<span class="token keyword">if</span> token_type_ids is None<span class="token punctuation">:</span>
  token_type_ids <span class="token operator">=</span> tf<span class="token punctuation">.</span><span class="token function">zeros</span><span class="token punctuation">(</span>shape<span class="token operator">=</span><span class="token punctuation">[</span>batch_size<span class="token punctuation">,</span> seq_length<span class="token punctuation">]</span><span class="token punctuation">,</span> dtype<span class="token operator">=</span>tf<span class="token punctuation">.</span>int32<span class="token punctuation">)</span>

<span class="token keyword">with</span> tf<span class="token punctuation">.</span><span class="token function">variable_scope</span><span class="token punctuation">(</span>scope<span class="token punctuation">,</span> default_name<span class="token operator">=</span><span class="token string">"bert"</span><span class="token punctuation">)</span><span class="token punctuation">:</span>
  <span class="token keyword">with</span> tf<span class="token punctuation">.</span><span class="token function">variable_scope</span><span class="token punctuation">(</span><span class="token string">"embeddings"</span><span class="token punctuation">)</span><span class="token punctuation">:</span>
    # Perform embedding lookup on the word ids<span class="token punctuation">.</span>
    
    #<span class="token punctuation">[</span>batch_size<span class="token punctuation">,</span>seq_length<span class="token punctuation">,</span>embedding_size<span class="token punctuation">]</span>    <span class="token punctuation">[</span>vocab_size<span class="token punctuation">,</span>embedding_size<span class="token punctuation">]</span>
    <span class="token punctuation">(</span>self<span class="token punctuation">.</span>embedding_output<span class="token punctuation">,</span> self<span class="token punctuation">.</span>embedding_table<span class="token punctuation">)</span> <span class="token operator">=</span> <span class="token function">embedding_lookup</span><span class="token punctuation">(</span>    #word_embedding
        input_ids<span class="token operator">=</span>input_ids<span class="token punctuation">,</span>           #<span class="token punctuation">[</span>batch_size<span class="token punctuation">,</span>seq_length<span class="token punctuation">]</span>
        vocab_size<span class="token operator">=</span>config<span class="token punctuation">.</span>vocab_size<span class="token punctuation">,</span>
        embedding_size<span class="token operator">=</span>config<span class="token punctuation">.</span>hidden_size<span class="token punctuation">,</span>
        initializer_range<span class="token operator">=</span>config<span class="token punctuation">.</span>initializer_range<span class="token punctuation">,</span>
        word_embedding_name<span class="token operator">=</span><span class="token string">"word_embeddings"</span><span class="token punctuation">,</span>
        use_one_hot_embeddings<span class="token operator">=</span>use_one_hot_embeddings<span class="token punctuation">)</span>

    # Add positional embeddings and token type embeddings<span class="token punctuation">,</span> then layer
    # normalize and perform dropout<span class="token punctuation">.</span>
    self<span class="token punctuation">.</span>embedding_output <span class="token operator">=</span> <span class="token function">embedding_postprocessor</span><span class="token punctuation">(</span>       #token_embedding和position_embedding        <span class="token punctuation">[</span>batch_size<span class="token punctuation">,</span>seq_length<span class="token punctuation">,</span>embedding_size<span class="token punctuation">]</span>
        input_tensor<span class="token operator">=</span>self<span class="token punctuation">.</span>embedding_output<span class="token punctuation">,</span>
        use_token_type<span class="token operator">=</span>True<span class="token punctuation">,</span>
        token_type_ids<span class="token operator">=</span>token_type_ids<span class="token punctuation">,</span>
        token_type_vocab_size<span class="token operator">=</span>config<span class="token punctuation">.</span>type_vocab_size<span class="token punctuation">,</span>
        token_type_embedding_name<span class="token operator">=</span><span class="token string">"token_type_embeddings"</span><span class="token punctuation">,</span>
        use_position_embeddings<span class="token operator">=</span>True<span class="token punctuation">,</span>
        position_embedding_name<span class="token operator">=</span><span class="token string">"position_embeddings"</span><span class="token punctuation">,</span>
        initializer_range<span class="token operator">=</span>config<span class="token punctuation">.</span>initializer_range<span class="token punctuation">,</span>
        max_position_embeddings<span class="token operator">=</span>config<span class="token punctuation">.</span>max_position_embeddings<span class="token punctuation">,</span>
        dropout_prob<span class="token operator">=</span>config<span class="token punctuation">.</span>hidden_dropout_prob<span class="token punctuation">)</span>

  <span class="token keyword">with</span> tf<span class="token punctuation">.</span><span class="token function">variable_scope</span><span class="token punctuation">(</span><span class="token string">"encoder"</span><span class="token punctuation">)</span><span class="token punctuation">:</span>
    # This converts a <span class="token number">2</span>D mask <span class="token keyword">of</span> shape <span class="token punctuation">[</span>batch_size<span class="token punctuation">,</span> seq_length<span class="token punctuation">]</span> to a <span class="token number">3</span>D
    # mask <span class="token keyword">of</span> shape <span class="token punctuation">[</span>batch_size<span class="token punctuation">,</span> seq_length<span class="token punctuation">,</span> seq_length<span class="token punctuation">]</span> which is used
    # <span class="token keyword">for</span> the attention scores<span class="token punctuation">.</span>
    attention_mask <span class="token operator">=</span> <span class="token function">create_attention_mask_from_input_mask</span><span class="token punctuation">(</span>     
        input_ids<span class="token punctuation">,</span> input_mask<span class="token punctuation">)</span>

    # Run the stacked transformer<span class="token punctuation">.</span>
    # <span class="token template-string"><span class="token string">`sequence_output`</span></span> shape <span class="token operator">=</span> <span class="token punctuation">[</span>batch_size<span class="token punctuation">,</span> seq_length<span class="token punctuation">,</span> hidden_size<span class="token punctuation">]</span><span class="token punctuation">.</span>
    self<span class="token punctuation">.</span>all_encoder_layers <span class="token operator">=</span> <span class="token function">transformer_model</span><span class="token punctuation">(</span>        #transformer_model  <span class="token function">list</span><span class="token punctuation">(</span>#<span class="token punctuation">[</span>batch_size<span class="token punctuation">,</span>seq_length<span class="token punctuation">,</span>embedding_size<span class="token punctuation">]</span><span class="token punctuation">)</span>
        input_tensor<span class="token operator">=</span>self<span class="token punctuation">.</span>embedding_output<span class="token punctuation">,</span>
        attention_mask<span class="token operator">=</span>attention_mask<span class="token punctuation">,</span>
        hidden_size<span class="token operator">=</span>config<span class="token punctuation">.</span>hidden_size<span class="token punctuation">,</span>
        num_hidden_layers<span class="token operator">=</span>config<span class="token punctuation">.</span>num_hidden_layers<span class="token punctuation">,</span>
        num_attention_heads<span class="token operator">=</span>config<span class="token punctuation">.</span>num_attention_heads<span class="token punctuation">,</span>
        intermediate_size<span class="token operator">=</span>config<span class="token punctuation">.</span>intermediate_size<span class="token punctuation">,</span>
        intermediate_act_fn<span class="token operator">=</span><span class="token function">get_activation</span><span class="token punctuation">(</span>config<span class="token punctuation">.</span>hidden_act<span class="token punctuation">)</span><span class="token punctuation">,</span>
        hidden_dropout_prob<span class="token operator">=</span>config<span class="token punctuation">.</span>hidden_dropout_prob<span class="token punctuation">,</span>
        attention_probs_dropout_prob<span class="token operator">=</span>config<span class="token punctuation">.</span>attention_probs_dropout_prob<span class="token punctuation">,</span>
        initializer_range<span class="token operator">=</span>config<span class="token punctuation">.</span>initializer_range<span class="token punctuation">,</span>
        do_return_all_layers<span class="token operator">=</span>True<span class="token punctuation">)</span>

  self<span class="token punctuation">.</span>sequence_output <span class="token operator">=</span> self<span class="token punctuation">.</span>all_encoder_layers<span class="token punctuation">[</span><span class="token operator">-</span><span class="token number">1</span><span class="token punctuation">]</span>     #获取最后一层的输出
  # The <span class="token string">"pooler"</span> converts the encoded sequence tensor <span class="token keyword">of</span> shape
  # <span class="token punctuation">[</span>batch_size<span class="token punctuation">,</span> seq_length<span class="token punctuation">,</span> hidden_size<span class="token punctuation">]</span> to a tensor <span class="token keyword">of</span> shape
  # <span class="token punctuation">[</span>batch_size<span class="token punctuation">,</span> hidden_size<span class="token punctuation">]</span><span class="token punctuation">.</span> This is necessary <span class="token keyword">for</span> segment<span class="token operator">-</span>level
  # <span class="token punctuation">(</span>or segment<span class="token operator">-</span>pair<span class="token operator">-</span>level<span class="token punctuation">)</span> classification tasks where we need a fixed
  # dimensional representation <span class="token keyword">of</span> the segment<span class="token punctuation">.</span>
  <span class="token keyword">with</span> tf<span class="token punctuation">.</span><span class="token function">variable_scope</span><span class="token punctuation">(</span><span class="token string">"pooler"</span><span class="token punctuation">)</span><span class="token punctuation">:</span>
    # We <span class="token string">"pool"</span> the model by simply taking the hidden state corresponding
    # to the first token<span class="token punctuation">.</span> We assume that <span class="token keyword">this</span> has been pre<span class="token operator">-</span>trained
    first_token_tensor <span class="token operator">=</span> tf<span class="token punctuation">.</span><span class="token function">squeeze</span><span class="token punctuation">(</span>self<span class="token punctuation">.</span>sequence_output<span class="token punctuation">[</span><span class="token punctuation">:</span><span class="token punctuation">,</span> <span class="token number">0</span><span class="token punctuation">:</span><span class="token number">1</span><span class="token punctuation">,</span> <span class="token punctuation">:</span><span class="token punctuation">]</span><span class="token punctuation">,</span> axis<span class="token operator">=</span><span class="token number">1</span><span class="token punctuation">)</span>    #取每个每个训练语料的第一个词的编码结果<span class="token punctuation">[</span><span class="token constant">CLS</span><span class="token punctuation">]</span>,它有整条训练语料的编码信息   <span class="token punctuation">[</span>batch_size<span class="token punctuation">,</span> hidden_size<span class="token punctuation">]</span>
    self<span class="token punctuation">.</span>pooled_output <span class="token operator">=</span> tf<span class="token punctuation">.</span>layers<span class="token punctuation">.</span><span class="token function">dense</span><span class="token punctuation">(</span>     #接一个全连接层进行输出 <span class="token punctuation">[</span>batch_size<span class="token punctuation">,</span> hidden_size<span class="token punctuation">]</span>
        first_token_tensor<span class="token punctuation">,</span>
        config<span class="token punctuation">.</span>hidden_size<span class="token punctuation">,</span>
        activation<span class="token operator">=</span>tf<span class="token punctuation">.</span>tanh<span class="token punctuation">,</span>
        kernel_initializer<span class="token operator">=</span><span class="token function">create_initializer</span><span class="token punctuation">(</span>config<span class="token punctuation">.</span>initializer_range<span class="token punctuation">)</span><span class="token punctuation">)</span>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104

word embedding

首先看word_embedding部分,它传入input_ids,运用one_hot为中介返回embedding结果

def embedding_lookup(input_ids,
                     vocab_size,
                     embedding_size=128,
                     initializer_range=0.02,
                     word_embedding_name="word_embeddings",
                     use_one_hot_embeddings=False):
  """Looks up words embeddings for id tensor.
  Args:
    input_ids: int32 Tensor of shape [batch_size, seq_length] containing word
      ids.
    vocab_size: int. Size of the embedding vocabulary.
    embedding_size: int. Width of the word embeddings.
    initializer_range: float. Embedding initialization range.
    word_embedding_name: string. Name of the embedding table.
    use_one_hot_embeddings: bool. If True, use one-hot method for word
      embeddings. If False, use `tf.nn.embedding_lookup()`. One hot is better
      for TPUs.
  Returns:
    float Tensor of shape [batch_size, seq_length, embedding_size].
  """
  # This function assumes that the input is of shape [batch_size, seq_length,
  # num_inputs].
  #
  # If the input is a 2D tensor of shape [batch_size, seq_length], we
  # reshape to [batch_size, seq_length, 1].
  if input_ids.shape.ndims == 2:
    input_ids = tf.expand_dims(input_ids, axis=[-1])                 #最低维扩维 [batch_size,seq_length,1]

embedding_table = tf.get_variable(
name=word_embedding_name,
shape=[vocab_size, embedding_size],
initializer=create_initializer(initializer_range))

if use_one_hot_embeddings:
flat_input_ids = tf.reshape(input_ids, [-1]) #[batch_sizeseq_length]
one_hot_input_ids = tf.one_hot(flat_input_ids, depth=vocab_size) #[batch_sizeseq_length,vocab_size]
output = tf.matmul(one_hot_input_ids, embedding_table) #[batch_size*seq_length,embedding_size]
else:
output = tf.nn.embedding_lookup(embedding_table, input_ids)

input_shape = get_shape_list(input_ids)

output = tf.reshape(output,
input_shape[0:-1] + [input_shape[-1] * embedding_size]) #[batch_size,seq_length,embedding_size]
return (output, embedding_table)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45

embedding_postprocessor

再看embedding_postprocessor 它包括token_type_embeddingposition_embedding。也就是图中的Segement EmbeddingsPosition Embeddings
embedding结构
但此代码中Position Embeddings部分与之前提出的Transformer不同,此代码中Position Embeddings是训练出来的,而传统的Transformer(如下)是固定值
在这里插入图片描述

def embedding_postprocessor(input_tensor,      #[batch_size,seq_length,embedding_size]
                            use_token_type=False,
                            token_type_ids=None,             #[batch_size,seq_length]
                            token_type_vocab_size=16,
                            token_type_embedding_name="token_type_embeddings",
                            use_position_embeddings=True,
                            position_embedding_name="position_embeddings",
                            initializer_range=0.02,
                            max_position_embeddings=512,
                            dropout_prob=0.1):
  """Performs various post-processing on a word embedding tensor.
  Args:
    input_tensor: float Tensor of shape [batch_size, seq_length,
      embedding_size].
    use_token_type: bool. Whether to add embeddings for `token_type_ids`.
    token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length].
      Must be specified if `use_token_type` is True.
    token_type_vocab_size: int. The vocabulary size of `token_type_ids`.
    token_type_embedding_name: string. The name of the embedding table variable
      for token type ids.
    use_position_embeddings: bool. Whether to add position embeddings for the
      position of each token in the sequence.
    position_embedding_name: string. The name of the embedding table variable
      for positional embeddings.
    initializer_range: float. Range of the weight initialization.
    max_position_embeddings: int. Maximum sequence length that might ever be
      used with this model. This can be longer than the sequence length of
      input_tensor, but cannot be shorter.
    dropout_prob: float. Dropout probability applied to the final output tensor.
  Returns:
    float tensor with same shape as `input_tensor`.
  Raises:
    ValueError: One of the tensor shapes or input values is invalid.
  """
  input_shape = get_shape_list(input_tensor, expected_rank=3)
  batch_size = input_shape[0]
  seq_length = input_shape[1]
  width = input_shape[2]

output = input_tensor

if use_token_type: #Segement Embeddings部分
if token_type_ids is None:
raise ValueError("token_type_ids must be specified if"
"use_token_type is True.")
token_type_table = tf.get_variable(
name=token_type_embedding_name,
shape=[token_type_vocab_size, width],
initializer=create_initializer(initializer_range))
# This vocab will be small so we always do one-hot here, since it is always
# faster for a small vocabulary.
flat_token_type_ids = tf.reshape(token_type_ids, [-1]) #[batch_sizeseq_length]
one_hot_ids = tf.one_hot(flat_token_type_ids, depth=token_type_vocab_size) #[batch_sizeseq_length,2] token_type只有01
token_type_embeddings = tf.matmul(one_hot_ids, token_type_table) #[batch_size*seq_length,embedding_size]
token_type_embeddings = tf.reshape(token_type_embeddings,
[batch_size, seq_length, width]) #[batch_size, seq_length, width=embedding_size]
output += token_type_embeddings #[batch_size, seq_length, embedding_size]

if use_position_embeddings: #Position Embeddings部分
assert_op = tf.assert_less_equal(seq_length, max_position_embeddings) #确保seq_length<max_position_embedding
with tf.control_dependencies([assert_op]):
full_position_embeddings = tf.get_variable(
name=position_embedding_name,
shape=[max_position_embeddings, width],
initializer=create_initializer(initializer_range))
# Since the position embedding table is a learned variable, we create it
# using a (long) sequence length max_position_embeddings. The actual
# sequence length might be shorter than this, for faster training of
# tasks that do not have long sequences.
#
# So full_position_embeddings is effectively an embedding table
# for position [0, 1, 2, , max_position_embeddings-1], and the current
# sequence has positions [0, 1, 2, seq_length-1], so we can just
# perform a slice.
position_embeddings = tf.slice(full_position_embeddings, [0, 0], #[seq_length,embedding_size]
[seq_length, -1])
num_dims = len(output.shape.as_list())

  # Only the last two dimensions are <span class="token function">relevant</span> <span class="token punctuation">(</span><span class="token template-string"><span class="token string">`seq_length`</span></span> and <span class="token template-string"><span class="token string">`width`</span></span><span class="token punctuation">)</span><span class="token punctuation">,</span> so
  # we broadcast among the first dimensions<span class="token punctuation">,</span> which is typically just
  # the batch size<span class="token punctuation">.</span>
  position_broadcast_shape <span class="token operator">=</span> <span class="token punctuation">[</span><span class="token punctuation">]</span>
  <span class="token keyword">for</span> _ <span class="token keyword">in</span> <span class="token function">range</span><span class="token punctuation">(</span>num_dims <span class="token operator">-</span> <span class="token number">2</span><span class="token punctuation">)</span><span class="token punctuation">:</span>
    position_broadcast_shape<span class="token punctuation">.</span><span class="token function">append</span><span class="token punctuation">(</span><span class="token number">1</span><span class="token punctuation">)</span>
  position_broadcast_shape<span class="token punctuation">.</span><span class="token function">extend</span><span class="token punctuation">(</span><span class="token punctuation">[</span>seq_length<span class="token punctuation">,</span> width<span class="token punctuation">]</span><span class="token punctuation">)</span>      #<span class="token punctuation">[</span><span class="token number">1</span><span class="token punctuation">,</span>seq_length<span class="token punctuation">,</span>embedding_size<span class="token punctuation">]</span>
  position_embeddings <span class="token operator">=</span> tf<span class="token punctuation">.</span><span class="token function">reshape</span><span class="token punctuation">(</span>position_embeddings<span class="token punctuation">,</span>     #<span class="token punctuation">[</span><span class="token number">1</span><span class="token punctuation">,</span>seq_length<span class="token punctuation">,</span>embedding_size<span class="token punctuation">]</span>
                                   position_broadcast_shape<span class="token punctuation">)</span>
  output <span class="token operator">+=</span> position_embeddings               #<span class="token punctuation">[</span>batch_size<span class="token punctuation">,</span> seq_length<span class="token punctuation">,</span> embedding_size<span class="token punctuation">]</span> 与#<span class="token punctuation">[</span><span class="token number">1</span><span class="token punctuation">,</span>seq_length<span class="token punctuation">,</span>embedding_size<span class="token punctuation">]</span>相加

#因为每一个batch的同一位置的position_embedding是一样的,所以相当于batch_size个position_embeddings与output相加

output = layer_norm_and_dropout(output, dropout_prob)
return output

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92

Transformer

embedding之后,首先构造一个attention_mask,这个attention_mask表示的含义是将原来的input_mask的[batch_size,seq_length]扩维到[batch_size,from_seq_length,to_seq_length]。保证对于每个from_seq_length都有一个input_mask。之后将他们传入到transformer模型。
transformer整体架构如图所示
在这里插入图片描述
下面我们来看transformer_model。首先对embedding进行multi-head attention,对输入进行残差layer_norm。后传入feed forward,再进行残差layer_norm
本块代码中与原论文中不一样的点为:在进行multi-head attention后先链接了一个全连接层,再进行的残差和layer_norm。而原论文中貌似没有那个全连接层。下面是代码,关键部分我已写上注释

def transformer_model(input_tensor,
                      attention_mask=None,   #[batch_size,form_seq_length,to_seq_length]
                      hidden_size=768,
                      num_hidden_layers=12,
                      num_attention_heads=12,
                      intermediate_size=3072,
                      intermediate_act_fn=gelu,
                      hidden_dropout_prob=0.1,
                      attention_probs_dropout_prob=0.1,
                      initializer_range=0.02,
                      do_return_all_layers=False):
  """Multi-headed, multi-layer Transformer from "Attention is All You Need".
  This is almost an exact implementation of the original Transformer encoder.
  See the original paper:
  https://arxiv.org/abs/1706.03762
  Also see:
  https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py
  Args:
    input_tensor: float Tensor of shape [batch_size, seq_length, hidden_size].
    attention_mask: (optional) int32 Tensor of shape [batch_size, seq_length,
      seq_length], with 1 for positions that can be attended to and 0 in
      positions that should not be.
    hidden_size: int. Hidden size of the Transformer.
    num_hidden_layers: int. Number of layers (blocks) in the Transformer.
    num_attention_heads: int. Number of attention heads in the Transformer.
    intermediate_size: int. The size of the "intermediate" (a.k.a., feed
      forward) layer.
    intermediate_act_fn: function. The non-linear activation function to apply
      to the output of the intermediate/feed-forward layer.
    hidden_dropout_prob: float. Dropout probability for the hidden layers.
    attention_probs_dropout_prob: float. Dropout probability of the attention
      probabilities.
    initializer_range: float. Range of the initializer (stddev of truncated
      normal).
    do_return_all_layers: Whether to also return all layers or just the final
      layer.
  Returns:
    float Tensor of shape [batch_size, seq_length, hidden_size], the final
    hidden layer of the Transformer.
  Raises:
    ValueError: A Tensor shape or parameter is invalid.
  """
  if hidden_size % num_attention_heads != 0:
    raise ValueError(
        "The hidden size (%d) is not a multiple of the number of attention "
        "heads (%d)" % (hidden_size, num_attention_heads))

attention_head_size = int(hidden_size / num_attention_heads)
input_shape = get_shape_list(input_tensor, expected_rank=3)
batch_size = input_shape[0]
seq_length = input_shape[1]
input_width = input_shape[2]

The Transformer performs sum residuals on all layers so the input needs

to be the same as the hidden size.

if input_width != hidden_size:
raise ValueError(“The width of the input tensor (%d) != hidden size (%d)” %
(input_width, hidden_size))

We keep the representation as a 2D tensor to avoid re-shaping it back and

forth from a 3D tensor to a 2D tensor. Re-shapes are normally free on

the GPU/CPU but may not be free on the TPU, so we want to minimize them to

help the optimizer.

prev_output = reshape_to_matrix(input_tensor) #这里官方说为了避免来回升降维,所以直接先变形为2D,最后再恢复成3D [batch_size*seq_length,hidden_size]

all_layer_outputs = []
for layer_idx in range(num_hidden_layers):
with tf.variable_scope(“layer_%d” % layer_idx):
layer_input = prev_output

  <span class="token keyword">with</span> tf<span class="token punctuation">.</span><span class="token function">variable_scope</span><span class="token punctuation">(</span><span class="token string">"attention"</span><span class="token punctuation">)</span><span class="token punctuation">:</span>
    attention_heads <span class="token operator">=</span> <span class="token punctuation">[</span><span class="token punctuation">]</span>
    <span class="token keyword">with</span> tf<span class="token punctuation">.</span><span class="token function">variable_scope</span><span class="token punctuation">(</span><span class="token string">"self"</span><span class="token punctuation">)</span><span class="token punctuation">:</span>
      attention_head <span class="token operator">=</span> <span class="token function">attention_layer</span><span class="token punctuation">(</span>            #进行self_attention 即multi<span class="token operator">-</span>head attention
          from_tensor<span class="token operator">=</span>layer_input<span class="token punctuation">,</span>      #<span class="token punctuation">[</span>batch_size<span class="token operator">*</span>seq_length<span class="token punctuation">,</span>hidden_size<span class="token punctuation">]</span>
          to_tensor<span class="token operator">=</span>layer_input<span class="token punctuation">,</span>        #<span class="token punctuation">[</span>batch_size<span class="token operator">*</span>seq_length<span class="token punctuation">,</span>hidden_size<span class="token punctuation">]</span>
          attention_mask<span class="token operator">=</span>attention_mask<span class="token punctuation">,</span>
          num_attention_heads<span class="token operator">=</span>num_attention_heads<span class="token punctuation">,</span>
          size_per_head<span class="token operator">=</span>attention_head_size<span class="token punctuation">,</span>
          attention_probs_dropout_prob<span class="token operator">=</span>attention_probs_dropout_prob<span class="token punctuation">,</span>
          initializer_range<span class="token operator">=</span>initializer_range<span class="token punctuation">,</span>
          do_return_2d_tensor<span class="token operator">=</span>True<span class="token punctuation">,</span>
          batch_size<span class="token operator">=</span>batch_size<span class="token punctuation">,</span>
          from_seq_length<span class="token operator">=</span>seq_length<span class="token punctuation">,</span>
          to_seq_length<span class="token operator">=</span>seq_length<span class="token punctuation">)</span>
      attention_heads<span class="token punctuation">.</span><span class="token function">append</span><span class="token punctuation">(</span>attention_head<span class="token punctuation">)</span>

    attention_output <span class="token operator">=</span> None
    <span class="token keyword">if</span> <span class="token function">len</span><span class="token punctuation">(</span>attention_heads<span class="token punctuation">)</span> <span class="token operator">==</span> <span class="token number">1</span><span class="token punctuation">:</span>
      attention_output <span class="token operator">=</span> attention_heads<span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span>
    <span class="token keyword">else</span><span class="token punctuation">:</span>
      # In the <span class="token keyword">case</span> where we have other sequences<span class="token punctuation">,</span> we just concatenate
      # them to the self<span class="token operator">-</span>attention head before the projection<span class="token punctuation">.</span>
      attention_output <span class="token operator">=</span> tf<span class="token punctuation">.</span><span class="token function">concat</span><span class="token punctuation">(</span>attention_heads<span class="token punctuation">,</span> axis<span class="token operator">=</span><span class="token operator">-</span><span class="token number">1</span><span class="token punctuation">)</span>

    # Run a linear projection <span class="token keyword">of</span> <span class="token template-string"><span class="token string">`hidden_size`</span></span> then add a residual
    # <span class="token keyword">with</span> <span class="token template-string"><span class="token string">`layer_input`</span></span><span class="token punctuation">.</span>
    <span class="token keyword">with</span> tf<span class="token punctuation">.</span><span class="token function">variable_scope</span><span class="token punctuation">(</span><span class="token string">"output"</span><span class="token punctuation">)</span><span class="token punctuation">:</span>
      attention_output <span class="token operator">=</span> tf<span class="token punctuation">.</span>layers<span class="token punctuation">.</span><span class="token function">dense</span><span class="token punctuation">(</span>                  #对attention的输出做一个全连接层
          attention_output<span class="token punctuation">,</span>
          hidden_size<span class="token punctuation">,</span>
          kernel_initializer<span class="token operator">=</span><span class="token function">create_initializer</span><span class="token punctuation">(</span>initializer_range<span class="token punctuation">)</span><span class="token punctuation">)</span>
      attention_output <span class="token operator">=</span> <span class="token function">dropout</span><span class="token punctuation">(</span>attention_output<span class="token punctuation">,</span> hidden_dropout_prob<span class="token punctuation">)</span>   
      attention_output <span class="token operator">=</span> <span class="token function">layer_norm</span><span class="token punctuation">(</span>attention_output <span class="token operator">+</span> layer_input<span class="token punctuation">)</span>         #残差和layer_norm
  #Feed Foward过程,先对输出升维、再进行降维
  # The activation is only applied to the <span class="token string">"intermediate"</span> hidden layer<span class="token punctuation">.</span>
  <span class="token keyword">with</span> tf<span class="token punctuation">.</span><span class="token function">variable_scope</span><span class="token punctuation">(</span><span class="token string">"intermediate"</span><span class="token punctuation">)</span><span class="token punctuation">:</span>
    intermediate_output <span class="token operator">=</span> tf<span class="token punctuation">.</span>layers<span class="token punctuation">.</span><span class="token function">dense</span><span class="token punctuation">(</span>             #升维
        attention_output<span class="token punctuation">,</span>
        intermediate_size<span class="token punctuation">,</span>
        activation<span class="token operator">=</span>intermediate_act_fn<span class="token punctuation">,</span>
        kernel_initializer<span class="token operator">=</span><span class="token function">create_initializer</span><span class="token punctuation">(</span>initializer_range<span class="token punctuation">)</span><span class="token punctuation">)</span>

  # Down<span class="token operator">-</span>project back to <span class="token template-string"><span class="token string">`hidden_size`</span></span> then add the residual<span class="token punctuation">.</span>
  <span class="token keyword">with</span> tf<span class="token punctuation">.</span><span class="token function">variable_scope</span><span class="token punctuation">(</span><span class="token string">"output"</span><span class="token punctuation">)</span><span class="token punctuation">:</span>                       #降维
    layer_output <span class="token operator">=</span> tf<span class="token punctuation">.</span>layers<span class="token punctuation">.</span><span class="token function">dense</span><span class="token punctuation">(</span>
        intermediate_output<span class="token punctuation">,</span>
        hidden_size<span class="token punctuation">,</span>
        kernel_initializer<span class="token operator">=</span><span class="token function">create_initializer</span><span class="token punctuation">(</span>initializer_range<span class="token punctuation">)</span><span class="token punctuation">)</span>
    layer_output <span class="token operator">=</span> <span class="token function">dropout</span><span class="token punctuation">(</span>layer_output<span class="token punctuation">,</span> hidden_dropout_prob<span class="token punctuation">)</span>
    layer_output <span class="token operator">=</span> <span class="token function">layer_norm</span><span class="token punctuation">(</span>layer_output <span class="token operator">+</span> attention_output<span class="token punctuation">)</span>    #加入残差
    prev_output <span class="token operator">=</span> layer_output                 #本层输出作为下一层输入
    all_layer_outputs<span class="token punctuation">.</span><span class="token function">append</span><span class="token punctuation">(</span>layer_output<span class="token punctuation">)</span>       #所有层的输出结果列表

if do_return_all_layers:
final_outputs = []
for layer_output in all_layer_outputs:
final_output = reshape_from_matrix(layer_output, input_shape)
final_outputs.append(final_output)
return final_outputs
else:
final_output = reshape_from_matrix(prev_output, input_shape)
return final_output

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133

self_attention

接下来介绍self_attention机制。他运用乘法注意力,自己和自己做attention,使每个词都全局语义信息。同时运用Multi-head attention。即将hidden_size平分为多个部分(head)。每个head进行self_attention。不同head学习不同子空间语义。
在这里插入图片描述
下面是代码,关键部分我已写上注释。首先将输入的key和value,reshape成[batch_size,num_head,seq_length,size_per_head]。在对这些head进行乘法注意力运算。经过softmax后乘以value。最后返回tensor with shape [batch_size*seq_length,hidden_size]

def attention_layer(from_tensor,      #from_tensor和to_tensor都是输入embedding  [batch_size*seq_length,hidden_size]
                    to_tensor,
                    attention_mask=None,    #[batch_size,form_seq_length,to_seq_length]
                    num_attention_heads=1,
                    size_per_head=512,
                    query_act=None,
                    key_act=None,
                    value_act=None,
                    attention_probs_dropout_prob=0.0,
                    initializer_range=0.02,
                    do_return_2d_tensor=False,
                    batch_size=None,
                    from_seq_length=None,
                    to_seq_length=None):
  """Performs multi-headed attention from `from_tensor` to `to_tensor`.
  This is an implementation of multi-headed attention based on "Attention
  is all you Need". If `from_tensor` and `to_tensor` are the same, then
  this is self-attention. Each timestep in `from_tensor` attends to the
  corresponding sequence in `to_tensor`, and returns a fixed-with vector.
  This function first projects `from_tensor` into a "query" tensor and
  `to_tensor` into "key" and "value" tensors. These are (effectively) a list
  of tensors of length `num_attention_heads`, where each tensor is of shape
  [batch_size, seq_length, size_per_head].
  Then, the query and key tensors are dot-producted and scaled. These are
  softmaxed to obtain attention probabilities. The value tensors are then
  interpolated by these probabilities, then concatenated back to a single
  tensor and returned.
  In practice, the multi-headed attention are done with transposes and
  reshapes rather than actual separate tensors.
  Args:
    from_tensor: float Tensor of shape [batch_size, from_seq_length,
      from_width].
    to_tensor: float Tensor of shape [batch_size, to_seq_length, to_width].
    attention_mask: (optional) int32 Tensor of shape [batch_size,
      from_seq_length, to_seq_length]. The values should be 1 or 0. The
      attention scores will effectively be set to -infinity for any positions in
      the mask that are 0, and will be unchanged for positions that are 1.
    num_attention_heads: int. Number of attention heads.
    size_per_head: int. Size of each attention head.
    query_act: (optional) Activation function for the query transform.
    key_act: (optional) Activation function for the key transform.
    value_act: (optional) Activation function for the value transform.
    attention_probs_dropout_prob: (optional) float. Dropout probability of the
      attention probabilities.
    initializer_range: float. Range of the weight initializer.
    do_return_2d_tensor: bool. If True, the output will be of shape [batch_size
      * from_seq_length, num_attention_heads * size_per_head]. If False, the
      output will be of shape [batch_size, from_seq_length, num_attention_heads
      * size_per_head].
    batch_size: (Optional) int. If the input is 2D, this might be the batch size
      of the 3D version of the `from_tensor` and `to_tensor`.
    from_seq_length: (Optional) If the input is 2D, this might be the seq length
      of the 3D version of the `from_tensor`.
    to_seq_length: (Optional) If the input is 2D, this might be the seq length
      of the 3D version of the `to_tensor`.
  Returns:
    float Tensor of shape [batch_size, from_seq_length,
      num_attention_heads * size_per_head]. (If `do_return_2d_tensor` is
      true, this will be of shape [batch_size * from_seq_length,
      num_attention_heads * size_per_head]).
  Raises:
    ValueError: Any of the arguments or tensor shapes are invalid.
  """

def transpose_for_scores(input_tensor, batch_size, num_attention_heads,
seq_length, width):
output_tensor = tf.reshape(
input_tensor, [batch_size, seq_length, num_attention_heads, width])

output_tensor <span class="token operator">=</span> tf<span class="token punctuation">.</span><span class="token function">transpose</span><span class="token punctuation">(</span>output_tensor<span class="token punctuation">,</span> <span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">,</span> <span class="token number">2</span><span class="token punctuation">,</span> <span class="token number">1</span><span class="token punctuation">,</span> <span class="token number">3</span><span class="token punctuation">]</span><span class="token punctuation">)</span>
<span class="token keyword">return</span> output_tensor

from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
to_shape = get_shape_list(to_tensor, expected_rank=[2, 3])

if len(from_shape) != len(to_shape):
raise ValueError(
“The rank of from_tensor must match the rank of to_tensor.”)

if len(from_shape) 3:
batch_size = from_shape[0]
from_seq_length = from_shape[1]
to_seq_length = to_shape[1]
elif len(from_shape) 2:
if (batch_size is None or from_seq_length is None or to_seq_length is None):
raise ValueError(
"When passing in rank 2 tensors to attention_layer, the values "
"for batch_size, from_seq_length, and to_seq_length "
“must all be specified.”)

Scalar dimensions referenced here:

B = batch size (number of sequences)

F = from_tensor sequence length

T = to_tensor sequence length

N = num_attention_heads

H = size_per_head

from_tensor_2d = reshape_to_matrix(from_tensor) #[batch_sizeseq_length,hidden_size]
to_tensor_2d = reshape_to_matrix(to_tensor) #[batch_sizeseq_length,hidden_size]
#首先将key和value输入进全连接层 但是激活函数为None,这里为什么我也不知道。。。

query_layer = [BF, NH]

query_layer = tf.layers.dense(
from_tensor_2d,
num_attention_heads size_per_head,
activation=query_act, #None
name=“query”,
kernel_initializer=create_initializer(initializer_range)) # [batch_sizeseq_length,hidden_size] hidden_size即num_attention_heads*size_per_head

key_layer = [BT, NH]

key_layer = tf.layers.dense(
to_tensor_2d,
num_attention_heads * size_per_head,
activation=key_act, #None
name=“key”,
kernel_initializer=create_initializer(initializer_range))

value_layer = [BT, NH]

value_layer = tf.layers.dense(
to_tensor_2d,
num_attention_heads * size_per_head,
activation=value_act, #None
name=“value”,
kernel_initializer=create_initializer(initializer_range))
#reshape成四位,用于注意力矩阵运算

query_layer = [B, N, F, H]

query_layer = transpose_for_scores(query_layer, batch_size, #将num_attention_heads调到第二维。这里表示每个batch有N个head,每个head有F个token,每个token用H表示。不同head学习不同子空间的特征
num_attention_heads, from_seq_length,
size_per_head)

key_layer = [B, N, T, H]

key_layer = transpose_for_scores(key_layer, batch_size, num_attention_heads,
to_seq_length, size_per_head)

Take the dot product between “query” and “key” to get the raw

attention scores. 乘法注意力

attention_scores = [B, N, F, T]

attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
attention_scores = tf.multiply(attention_scores,
1.0 / math.sqrt(float(size_per_head)))

if attention_mask is not None:
# attention_mask = [B, 1, F, T]
attention_mask = tf.expand_dims(attention_mask, axis=[1])

#这部分将每条训练语料的结尾padding的部分都变为一个极小值,其他有实数据的部分都为<span class="token number">0</span>
# Since attention_mask is <span class="token number">1.0</span> <span class="token keyword">for</span> positions we want to attend and <span class="token number">0.0</span> <span class="token keyword">for</span>
# masked positions<span class="token punctuation">,</span> <span class="token keyword">this</span> operation will create a tensor which is <span class="token number">0.0</span> <span class="token keyword">for</span>
# positions we want to attend and <span class="token operator">-</span><span class="token number">10000.0</span> <span class="token keyword">for</span> masked positions<span class="token punctuation">.</span>
adder <span class="token operator">=</span> <span class="token punctuation">(</span><span class="token number">1.0</span> <span class="token operator">-</span> tf<span class="token punctuation">.</span><span class="token function">cast</span><span class="token punctuation">(</span>attention_mask<span class="token punctuation">,</span> tf<span class="token punctuation">.</span>float32<span class="token punctuation">)</span><span class="token punctuation">)</span> <span class="token operator">*</span> <span class="token operator">-</span><span class="token number">10000.0</span>

# Since we are adding it to the raw scores before the softmax<span class="token punctuation">,</span> <span class="token keyword">this</span> is
# effectively the same <span class="token keyword">as</span> removing these entirely<span class="token punctuation">.</span>
#相加后,有实数据的部分加的,padding部分都是一个极小值
attention_scores <span class="token operator">+=</span> adder

Normalize the attention scores to probabilities.

attention_probs = [B, N, F, T]

attention_probs = tf.nn.softmax(attention_scores)

This is actually dropping out entire tokens to attend to, which might

seem a bit unusual, but is taken from the original Transformer paper.

attention_probs = dropout(attention_probs, attention_probs_dropout_prob)

value_layer = [B, T, N, H]

value_layer = tf.reshape(
value_layer,
[batch_size, to_seq_length, num_attention_heads, size_per_head])

value_layer = [B, N, T, H]

value_layer = tf.transpose(value_layer, [0, 2, 1, 3])

context_layer = [B, N, F, H]

注意力矩阵乘以value

context_layer = tf.matmul(attention_probs, value_layer)

context_layer = [B, F, N, H]

context_layer = tf.transpose(context_layer, [0, 2, 1, 3])

if do_return_2d_tensor:

返回2D结果

# <span class="token template-string"><span class="token string">`context_layer`</span></span> <span class="token operator">=</span> <span class="token punctuation">[</span><span class="token constant">B</span><span class="token operator">*</span><span class="token constant">F</span><span class="token punctuation">,</span> <span class="token constant">N</span><span class="token operator">*</span><span class="token constant">V</span><span class="token punctuation">]</span>
context_layer <span class="token operator">=</span> tf<span class="token punctuation">.</span><span class="token function">reshape</span><span class="token punctuation">(</span>
    context_layer<span class="token punctuation">,</span>
    <span class="token punctuation">[</span>batch_size <span class="token operator">*</span> from_seq_length<span class="token punctuation">,</span> num_attention_heads <span class="token operator">*</span> size_per_head<span class="token punctuation">]</span><span class="token punctuation">)</span>

else:
# context_layer = [B, F, NV]
context_layer = tf.reshape(
context_layer,
[batch_size, from_seq_length, num_attention_heads size_per_head])

return context_layer

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191

模型应用

模型怎么用呢,在BertModel class中有两个函数。get_pool_output表示获取每个batch第一个词的[CLS]表示结果。BERT认为这个词包含了整条语料的信息;适用于句子级别的分类问题。get_sequence_output表示BERT最终的输出结果,shape为[batch_size,seq_length,hidden_size]。可以直观理解为对每条语料的最终表示,适用于seq2seq问题。
在这里插入图片描述

def get_pooled_output(self):
  return self.pooled_outp          #[batch_size, hidden_size]
def get_sequence_output(self):
  """Gets final hidden layer of encoder.
  Returns:
    float Tensor of shape [batch_size, seq_length, hidden_size] corresponding
    to the final hidden of the transformer encoder.
  """
  return self.sequence_output

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

下一篇是训练过程。最近突然有两件事要忙,所以可能要鸽几天了

                                </div>
            <link href="https://csdnimg.cn/release/phoenix/mdeditor/markdown_views-b6c3c6d139.css" rel="stylesheet">
                </div>

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值