DeepLearnToolbox_DBN notes

本文档介绍了如何使用DeepLearnToolbox训练一个拥有100个隐藏单元的RBM,并可视化其权重。此外,还展示了如何训练一个100-100隐藏单元的DBN,并利用其权重初始化神经网络。
摘要由CSDN通过智能技术生成

Contents

function test_example_DBN
load mnist_uint8;
%数据归一化
train_x = double(train_x) / 255;
test_x  = double(test_x)  / 255;
train_y = double(train_y);
test_y  = double(test_y);

ex1 train a 100 hidden unit RBM and visualize its weights

rand('state',0)
dbn.sizes = [100];%隐层设置为100个节点
opts.numepochs =   1;
opts.batchsize = 100;
opts.momentum  =   0;
opts.alpha     =   1;
dbn = dbnsetup(dbn, train_x, opts);
dbn = dbntrain(dbn, train_x, opts);
figure; visualize(dbn.rbm{1}.W');   %  Visualize the RBM weights
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值