导读:
数据的价值在于与应用场景的结合,不同应用场景下,数据所贡献的经济价值有所不同。数据资产按照应用领域不同,可划分为交通数据、医疗数据、金融数据、科研数据、社交数据、产业数据等。
未经清洗加工的原始数据,存在冗余、无序等方面的缺陷,导致其应用价值有限,而经过脱敏、分类、清洗、建模分析等数据加工处理后形成的可采、可见、标准、互通、可信的高质量数据,具备较高的应用价值。依照发展阶段,数据资产可以分为原始数据、粗加工后数据、精加工后数据、初探应用场景的数据、实现商业化的数据等。
数据的价值在于与应用场景的结合,不同应用场景下,数据所贡献的经济价值有所不同。数据资产按照应用领域不同,可划分为交通数据、医疗数据、金融数据、科研数据、社交数据、产业数据等。
数据资产的应用场景广泛,不仅可帮助企业进行精准营销、风险管控、商业决策等,也可应用于民生建设,促进社会发展和提高人民生活水平。例如,交通数据资产大类下的“出行数据”,可应用于移动出行的乘客风险监控。滴滴等出行服务商的数据分析师和算法开发人员,根据出行订单相关的“出行时长”、“出行时间点”、“出行里程”、“出行起始点”、“行程停留情况”等记录,判断乘客发生风险的可能性,以便随时监控风险和及时联系乘客确认乘车安全。
再如,医疗数据资产大类下的“疾病数据”,可应用于提高疾病治疗水平。医疗机构的科研人员,根据病患的“诊断数据”、“病史”、“影像”等记录,研究了解新冠肺炎的流行病学规律,优化治疗方案。同时,可基于医疗数据建立新冠肺炎流行病学模拟数理模型,预判疫情发展的速度和方向,帮助各级政府科学决策,让抗疫过程少走弯路。