向量间距离/相似度及用 Python 进行计算

本文介绍了几种常用的向量相似度计算方法,包括欧氏距离、余弦相似度等,并探讨了它们的应用场景及数学原理。
部署运行你感兴趣的模型镜像

计算距离的目的也是为了确定两个向量的相似度,这里的向量可以是纯数学的数组,或者是一系列带有某些可量化特征值的物件。写作本文的原由是需要用 Numpy 计算两个实际对象的相似度,实现代码非常简单,因此更不能满足于此,借此机会多多了解下向量之间距离和相似度的概念,还回顾下一些相关的数学知识。

计算两个向量的相似度有许多的方法,如

  1. 欧氏距离(Euclidean Distance): 点间直线距离,数值越小越相似
  2. 夹角余弦(Cosine): 余弦相似度(Cosine Similarity),计算两个向量之间的夹角,值在  -1 ~ 1 之间
  3. 曼哈顿距离(Manhattan Distance): 点间在坐标系上的绝对轴距总和
  4. 切比雪夫距离(Chebyshev Distance): 像国际象棋中的王从一格子到另一个格子间的距离
  5. 标准化欧氏距离(Standardized Euclidean distance): 先对各个分量进行标准化,再求欧氏距离
  6. 其他距离和相关系数,如马氏距离(Mahalanobis Distance), 兰氏距离(Lance Williams Distance); 皮尔逊相关系数(Pearson Correlation Coefficient), 杰卡德相似系数(Jaccard similarity coefficient)

本文主要关注到欧氏距离和余弦相似度这两个数值的求解上。 阅读全文 >>

您可能感兴趣的与本文相关的镜像

Python3.11

Python3.11

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值