python计算两个向量的相似度

功能说明

将两个向量分别存储在TXT中,选择功能计算余弦相似度,还是绝对误差

参数说明
--tpye cos表示余弦相似度;L1表示绝对误差
--fileA 输入第一个文件路径
--fileB 输入第二个文件路径
代码

下面展示一些 内联代码片

import os
import numpy as np
import argparse

def cos_sim(vector_a, vector_b):
    """
    计算两个向量之间的余弦相似度
    :param vector_a: 向量 a 
    :param vector_b: 向量 b
    :return: sim
    """
    vector_a = np.mat(vector_a)
    vector_b = np.mat(vector_b)
    num = float(vector_a * vector_b.T)
    denom = np.linalg.norm(vector_a) * np.linalg.norm(vector_b)
    cos = num / denom
    sim = 0.5 + 0.5 * cos
    return sim


def abs_diff(vector_a, vector_b):
    
    num = vector_a.shape[1]
    print("total numer: ",num)
    sum = 0
    for i in range(num):
        sum += abs(vector_a[0][i] - vector_b[0][i])
    return sum / float(num)

def parse_arg():

    parser = argparse.ArgumentParser(description='calculate two files similarity')
    parser.add_argument("--type",default="cos",type=str,help="cos or L1")
    parser.add_argument('--fileA', type=str,help="first file")
    parser.add_argument('--fileB', type=str,help="second file")

    args = parser.parse_args()
    return args

if __name__ == "__main__":
    args = parse_arg()
    arrayA = np.loadtxt(args.fileA).reshape(1,-1)
    arrayB = np.loadtxt(args.fileB).reshape(1,-1)
    if args.type == 'cos':
        sim = cos_sim(arrayA,arrayB)
    elif args.type == 'L1':
        sim = abs_diff(arrayA,arrayB)
    else:
        print("type error!!!")
    print("{} similarity is : ".format(args.type),sim)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值